Biodiversity of Chilean Sea Anemones (Cnidaria: Anthozoa): Distribution Patterns and Zoogeographic Implications, Including New Records for the Fjord Region*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000). -
Holocene Relative Sea-Level Change Along the Tectonically Active Chilean Coast
This is a repository copy of Holocene relative sea-level change along the tectonically active Chilean coast. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/161478/ Version: Accepted Version Article: Garrett, Ed, Melnick, Daniel, Dura, Tina et al. (5 more authors) (2020) Holocene relative sea-level change along the tectonically active Chilean coast. Quaternary Science Reviews. 106281. ISSN 0277-3791 https://doi.org/10.1016/j.quascirev.2020.106281 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Holocene relative sea-level change along the tectonically active Chilean coast 2 3 Ed Garrett1*, Daniel Melnick2, Tina Dura3, Marco Cisternas4, Lisa L. Ely5, Robert L. Wesson6, Julius 4 Jara-Muñoz7 and Pippa L. Whitehouse8 5 6 1 Department of Environment and Geography, University of York, York, UK 7 2 Instituto de Ciencias de la Tierra, TAQUACh, Universidad Austral de Chile, Valdivia, Chile 8 3 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 9 4 Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile 10 5 Department of Geological Sciences, Central Washington University, Ellensburg, WA, USA 11 6 U.S. -
Harmful Environmental Exposures and Vulnerable Populations Environmental Health in Nursing
Unit II: Harmful Environmental Exposures and Vulnerable Populations Environmental Health in Nursing Unit 1I: Harmful Environmental Exposures and Vulnerable Populations INTRODUCTION Unit 1 highlighted various roles of the nursing profession where knowledge of environmental exposures is central to practice. In Unit 2, the focus is upon population groups who are most vulnerable to harmful environmental exposures. While risks to adverse health outcomes can vary according to geography, housing and location of environmental exposures, some humans are at greater risk due to their biophysical and sociopolitical vulnerability. Unit 2 explains risk and vulnerability across the lifespan with a focus upon specific vulnerabilities and harmful effects at various developmental stages. A second chapter highlights anticipatory guidance for parents and caregivers to reduce environmental exposures for children from infancy to adolescence. Third, Unit 2 considers the impact of social determinants of health, which are commonly referred to as factors where people live, learn, work, play and pray. Social determinants at neighborhood and community levels impact individual level exposures. Finally, Unit 2 includes a chapter about the effects of social determinants on the vulnerability of immigrants and refugees. See Unit 5: Sustainable Communities, for the chapter about Environmental Justice, which addresses the adverse outcomes for those who live in more environmentally hazardous areas. Page 23 Alliance of Nurses for Healthy Environments Unit II: Harmful Environmental Exposures and Vulnerable Populations Environmental Health in Nursing HARMFUL ENVIRONMENTAL EXPOSURES AND factors that result in variability of outcomes across VULNERABLE POPULATIONS populations. Jeanne Leffers, PhD, RN, FAAN Risk and vulnerability are related to each other. Some Professor Emeritus describe vulnerability as a series of threshold factors that University of Massachusetts College of Nursing increase or amplify risk and lead to poorer health Dartmouth, MA outcomes. -
The Validity of Anthothoe Chilensis (Actiniaria, Sagartiidae) and Its Distribution in Southern Hemisphere
. THE VALIDITY OF ANTHOTHOE CHILENSIS (ACTINIARIA, SAGARTIIDAE) AND ITS DISTRIBUTION IN SOUTHERN HEMISPHERE Adriana C. Excoffon^ Maria Júlia C. Belém^ Maurício O. Zamponi^'^ Erika Schlenz^ ABSTRACT Anthothoe chilemis (Lesson, 1830) is redescribed based on specimens collected from the intertidal of Rio de Janeiro (Brazil) and Mar dei Plata (Argentina). The geographic distribution is amplified to the Southwest Atlantic Ocean. The type species of the genus, A. stimpsoni (Verrill, 1870) is considered a junior subjective synonym of A. chilensis. KEYWORDS. Sagartiidae, Anthothoe chilensis, redescription, distribution, synonymy. INTRODUCTION CARLGREN (1949) listed four species: Anthothoe stimpsoni (Verrill, 1870), A. austraUensis Carlgren, 1949, A. vagrans (Stuckey, 1909) and A. panamensis Carlgren, 1949, in the genus Anthothoe Carlgren, 1938. A. panamensis should be considered as "species inquirenda", since CARLGREN (1951: 433) identified doubtfuUy two specimens from the Gulf of California as "A. panamensis (Verrill) " CARLGREN (1950a, 1959) ixdinsíexveá Actinothoe albocincta Hutton, 1878 and Actinothoe chilensis Lesson, 1830, respectively, to the genus Anthothoe. The genus is considered as endemic to the Southern Hemisphere. 1 Laboratório de Biologia de Cnidarios. Departamento de Ciências Marinas. Faculdad de Ciências Exactas y Naturales. UNMP. Funes 3250. 7600. Mar dei Plata. Argentina. 2. Universidade Federal do Rio de Janeiro. Caixa Postal 24.030; CEP 20522-970, Rio de Janeiro, RJ, Brasil. (CNPq researcher). 3. CONICET researcher. 4. Departamento de Zoologia. Instituto de Biociências, Universidade de São Paulo, Caixa Postal 1 1 .294; CEP 05422-970, São Paulo, SP, Brasil. Iheringia, Sér. Zool., Porto Alegre, (82): 107-1 18,1 1 abr. 1997 108 EXCOFFQN; BELÉM; ZAMPONI & SCHLENZ This paper deals with the redescription ofA. -
Of Oceanactis Diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis
JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2003, 8, 93--101 New Record of Oceanactis diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis N. P. Sanamyan Klrimchatka institute ofEcology and Environment, Ptxrtyzanskqya a Petrqpavlovsk-Ktzmchatslty, 683000, Russia E-niaiL' na([email protected] (Received 1 February 2002; Accepted 10 November 2002) The small, deep-water sea anemone Oceanactis diomedeae (McMurrich, 1893) is recorded for the first time since it was first described, living in muddy habitats of the Sea of Okhotsk. The genus Oceanactis Moseley, 1877 is considered synonymous with Oractts McMurrich, 1893 and is the only genus belonging to the family Oractiidae Riemann-ZUrneck, 2000. The invagina- "glandular tions of the oral dise or sacs", unique to the Oractiidae, are de- scribed and their possible function is discussed. Key Words: Actiniaria. Oractiidae, sea anemones, Sea of Okhotsk, taxon- omy. Introduction were Several specimens of Oceanactis diomedeae (McMurrich, 1893) found among other sea anemones collected in the Sea of Okhotsk. This species was de- scribed as Oractis diomedeae McMurrich, 1893 from several specimens collected in California (McMurrich 1893), The taxonomic status of Oractis McMurrich, 1893 was not clear for a long time: initially described as a fbrm related to Gonactinia Sars, 1851 (Gonactiniidae), it was referred to the Andresiidae by Carlgren (1931) and later to the Haloclavidae by Carlgren (1949). Stephenson (1935: 30) pointed out that Oractis is an unusual form, not fitting readily into any family. He considered "may it to be related to the Halcampoididae or it be an immature or aberrant Ilyan- thid." Recently Riemann-ZUrneck (2000) established a new family Oractiidae and described a second species belonging to this genus, Oractis bursijt?ra Riemann- ZUrneck, 20oo, based on a single specimen from the central Arctic deep sea in- (Amundsen Basin, 3ooOm). -
The Decline of Atlantic Cod – a Case Study
The Decline of Atlantic Cod – A Case Study Author contact information Wynn W. Cudmore, Ph.D., Principal Investigator Northwest Center for Sustainable Resources Chemeketa Community College P.O. Box 14007 Salem, OR 97309 E-mail: [email protected] Phone: 503-399-6514 Published 2009 DUE # 0757239 1 NCSR curriculum modules are designed as comprehensive instructions for students and supporting materials for faculty. The student instructions are designed to facilitate adaptation in a variety of settings. In addition to the instructional materials for students, the modules contain separate supporting information in the "Notes to Instructors" section, and when appropriate, PowerPoint slides. The modules also contain other sections which contain additional supporting information such as assessment strategies and suggested resources. The PowerPoint slides associated with this module are the property of the Northwest Center for Sustainable Resources (NCSR). Those containing text may be reproduced and used for any educational purpose. Slides with images may be reproduced and used without prior approval of NCSR only for educational purposes associated with this module. Prior approval must be obtained from NCSR for any other use of these images. Permission requests should be made to [email protected]. Acknowledgements We thank Bill Hastie of Northwest Aquatic and Marine Educators (NAME), and Richard O’Hara of Chemeketa Community College for their thoughtful reviews. Their comments and suggestions greatly improved the quality of this module. We thank NCSR administrative assistant, Liz Traver, for the review, graphic design and layout of this module. 2 Table of Contents NCSR Marine Fisheries Series ....................................................................................................... 4 The Decline of Atlantic Cod – A Case Study ................................................................................ -
Stolen Seafood
STOLEN SEAFOOD The Impact of Pirate Fishing on Our Oceans 2013 MARGOT L. STILES ARIEL KAGAN EmILY SHAFTEL Protecting the BETH LOWEll World’s Oceans A www.oceana.org Photo: Stock.Xchng Illegal fishing threatens the livelihoods of millions of people who rely on healthy fisheries. Photo: Stock.Xchng Acknowledgements CONTENTS Oceana would like to thank two anonymous 2 Introduction reviewers as well as the 3 following individuals for How Much Seafood is Stolen? their contributions to 6 Illegal Fishing Hurts People this report: Maria José Cornax, Dustin Cranor, 8 Illegal Fishing Hurts Vulnerable Species Michael Hirshfield and Elizabeth Pincumbe. 10 Illegal Fishing Hurts the Economy 12 The Profit Motive 16 The Shell Game 20 Stopping Stolen Seafood 23 References 1 www.oceana.org INTRODUCTION INTRODUCTION Pirate fishing may be understood best by standing on the beach and gazing out to sea. Almost all crime at sea takes place beyond the horizon line, hidden from view. This vast wilderness is exploited not only for fish, but as a hiding place for criminal activities. Stolen fish are caught illegally, evading a wide range of safeguards to undercut the costs of doing business. Blatant violation of catch limits, gear restrictions and safety precautions are frequently carried out by a small fraction of fishermen, undermining the efforts of responsible “Illegal, unregulated and unreported fishing is a fishing companies. The resulting damage to marine resources can lead global phenomenon with devastating environmental to smaller catches, slowed recovery of and socio-economic consequences.” depleted stocks or even collapse for the Joint Statement between the European Commission and United States most vulnerable fisheries.1 Government, Maria Damanaki and Jane Lubchenco 2011 Pirate, or illegal, fishing is often lumped together with unregulated and unreported fishing under the abbreviation “IUU.” Unregulated fishing takes place in nations that lack the resources to establish fisheries laws or monitoring. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Benthic Data Sheet
DEMERSAL OTTER/BEAM TRAWL DATA SHEET RESEARCH VESSEL_____________________(1/20/13 Version*) CLASS__________________;DATE_____________;NAME:___________________________; DEVICE DETAILS_________ LOCATION (OVERBOARD): LAT_______________________; LONG______________________________ LOCATION (AT DEPTH): LAT_______________________; LONG_____________________________; DEPTH___________ LOCATION (START UP): LAT_______________________; LONG______________________________;.DEPTH__________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ TIME: IN______AT DEPTH_______START UP_______SURFACE_______.DURATION OF TRAWL________; SHIP SPEED__________; WEATHER__________________; SEA STATE__________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_______________________________ INVERTEBRATES Phylum Porifera Order Pennatulacea (sea pens) Class Calcarea __________________________________ Family Stachyptilidae Class Demospongiae (Vase sponge) _________________ Stachyptilum superbum_____________________ Class Hexactinellida (Hyalospongia- glass sponge) Suborder Subsessiliflorae Subclass Hexasterophora Family Pennatulidae Order Hexactinosida Ptilosarcus gurneyi________________________ Family Aphrocallistidae Family Virgulariidae Aphrocallistes vastus ______________________ Acanthoptilum sp. ________________________ Other__________________________________________ Stylatula elongata_________________________ Phylum Cnidaria (Coelenterata) Virgularia sp.____________________________ Other_______________________________________ -
On Methods of Reproduction As Specific Characters
[ 131 ] On Methods of Reproduction as Specific Characters. By T. A. Stephenson, D.Se., Zoology Department, University College, London." " With 11 Figures in the Text. CONTENTS. PAGE Introduction. 131 1. The methods of reproduction prevalent among Actinians 132 2. Data relating to the subject collected by W. E. Evans 137 3. Account of experiments at Plymouth . 139 4. Evidence derived from the literature 154 5. The effect of the mode of reproduction upon the morphology. 157 6. Reproduction in the British species as a whole 158 7. Discussion 159 8. Summary. 166 Literature 167 INTRODUCTION. THE primary aim of this paper is to show tha~ among certain Actinians investigated, the species are sharply differentiated by their divers methods of reproduction; and to point out that the general question of species is one which is worthy of the attention of experimental biologists. Arguments supporting these contentions will be found in Section 7. I should like to make the following acknowledgments. I have received a grant, which has made the work described possible, from the Department of Scientific and Industrial Research. I have received interest and advice from Prof. Watson, and invaluable assistance (detailed below) from Mr. W. Edgar Evans. The whole cultural side of the work was carried out by my wife, who also provided Text-Figs. 2 and 3, and the sections from which they were drawn. I am very much indebted also to the Plymouth staff and to Miss M. Delap, of Valencia, and Mr. Ehnhirst, of Millport, for the collection of the large amount of material required. LIBRARY M.B.A. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella Vectensis
Reference: BiD!. Bull. 182: 169-176. (April, 1992) The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis CADET HAND AND KEVIN R. UHLINGER Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, California 94923 Abstract. Nematostella vectensis, a widely distributed, water at room temperatures (Stephenson, 1928), and un burrowing sea anemone, was raised through successive der the latter conditions some species produce numerous sexual generations at room temperature in non-circulating asexual offspring by a variety of methods (Cary, 1911; seawater. It has separate sexes and also reproduces asex Stephenson, 1929). More recently this trait has been used ually by transverse fission. Cultures of animals were fed to produce clones ofgenetically identical individuals use Artemia sp. nauplii every second day. Every eight days ful for experimentation; i.e., Haliplanella luciae (by Min the culture water was changed, and the anemones were asian and Mariscal, 1979), Aiptasia pulchella (by Muller fed pieces of Mytilus spp. tissue. This led to regular Parker, 1984), and Aiptasia pallida (by Clayton and Las spawning by both sexes at eight-day intervals. The cultures ker, 1984). We now add one more species to this list, remained reproductive throughout the year. Upon namely Nematostella vectensis Stephenson (1935), a small, spawning, adults release either eggs embedded in a gelat burrowing athenarian sea anemone synonymous with N. inous mucoid mass, or free-swimming sperm. In one ex pellucida Crowell (1946) (see Hand, 1957). periment, 12 female isolated clonemates and 12 male iso Nematostella vectensis is an estuarine, euryhaline lated clonemates were maintained on the 8-day spawning member ofthe family Edwardsiidae and has been recorded schedule for almost 8 months.