Design of an Intensified Reactor for the Synthetic Natural Gas Production Through Methanation in the Carbon Capture and Utilization Context

Total Page:16

File Type:pdf, Size:1020Kb

Design of an Intensified Reactor for the Synthetic Natural Gas Production Through Methanation in the Carbon Capture and Utilization Context Design of an Intensified Reactor for the Synthetic Natural Gas Production through Methanation in the Carbon Capture and Utilization Context Santiago Ortiz Laverde Chemical Engineer Submitted in the fulfilment of the requirements for the degree of Master in Process Design and Management Advisor: Manuel Alfredo Figueredo Medina, M.Sc. Co-advisors: Camilo Rengifo Gutiérrez, Ph.D. Martha Isabel Cobo Ángel, Ph.D. Maestría en Diseño y Gestión de Procesos Faculty of Engineering Universidad de La Sabana Chía, Colombia 2020 DEDICATION To my parents and brother, to whom I owe everything in my life. i ACKNOWLEDGMENTS First of all, I am grateful to Universidad de La Sabana, an institution that has immensely funded my education as a professional, magister, and human being. Further, many people have contributed to my formation in these past two years. Nevertheless, some of them are worth mentioning here. I would first like to acknowledge my advisor, Professor Manuel Figueredo, mostly because he has always believed in me from the beginning and despite all the obstacles along the way. Second to Professor Camilo Rengifo, not only because of his lectures in applied mathematics but also because he has motivated me until the end. Third, to Professor Martha Cobo, for encouraging my involvement in this project and whom I am simply honoured to have as co-advisor. Fourth, to Professors William Oquendo and Mario Noriega, who have set a precedent in my academic formation and whom I deeply admire. Fifth, to Dr Néstor Sánchez, whose true friendship has accompanied me during this journey. Finally, I want to thank Universidad Nacional de Colombia for opening its doors to me in the master’s program, showing me the genuine rigour required to be qualified as a chemical engineer. ii ABSTRACT The idea of a sustainable future has led to the exclusion of fossil fuels from development policies and the inclusion of low-carbon alternatives instead. The strategy must be holistic, as proposed by the carbon capture and utilization technologies alongside renewable energies. An example is converting CO2 into value-added products, such as CH4 or Synthetic Natural Gas (SNG), using surplus power of renewable alternatives, in a low-carbon footprint process. The chemical route for the synthesis of SNG from CO2 and H2 is a catalytic reaction known as CO2 methanation or Sabatier reaction. The methanation is an example of CO2 capture and utilization technologies' industrial application within the so-called Power-to-Methane (PtM) context. In this scenario, fixed bed reactors have been the reaction technology employed by default. However, their deficiency in handling the heat released from the highly exothermic Sabatier reaction or responding to the process' intermittency appropriately has been demonstrated. These drawbacks have aroused scientific interest in developing reactors better adapted to the PtM context demands. One approach is by intensifying the methanation process to increase the mass- and energy-transfer and improve its transient response. In this project, the phenomenological hot spots formation in fixed bed reactors used for the methanation industrial process was investigated through a parametric sensitivity analysis, simulating the reactor start-up. On the other hand, it was proposed a CFD simulation-aided conceptual design of a wall-coated reactor for the SNG production using an intensification strategy. The design was based on a reactor formed by single-pass and heat-exchanger stacked- plates. The reacting channel dimensions were defined, including the catalytic layer thickness, fulfilling a minimum quality threshold given by the CO2 conversion (≥ 95%). The proposed design was also intended to maximize the volume of processed gas while meeting the quality requirement, resulting in a throughput per reaction channel of ~12 ml/min. Likewise, the plates manifold geometry and dimensions that best promoted a flow rate uniform distribution were established as a function of the number of reacting channels. Finally, a preliminary dynamic analysis of the operation start-up and shutdown was performed, establishing that the designed reactor does not present a hysteresis behaviour, an ideal condition for intermittent environments. Keywords: Carbon Capture and Utilization, CFD-aided Design, Fixed-bed Reactor, Hot spots Formation, Power-to-Methane, Process Intensification. _____________________________________________________________________________________ Design of an Intensified Reactor for the Synthetic Natural Gas Production iii | P a g e through Methanation in the Carbon Capture and Utilization Context. Santiago Ortiz Laverde (2020) RESUMEN La idea de un futuro sostenible ha conllevado a suprimir el uso de combustibles de origen fósil de los planes de desarrollo y por el contrario incluir alternativas con baja huella de carbono. La estrategia debe ser holística, como lo proponen las tecnologías de captura y utilización de CO2 junto con las energías renovables. Un ejemplo es la conversión del CO2 en productos con valor agregado, como el CH4 o Gas Natural Sintético (GNS), utilizando la energía sobrante de las alternativas renovables, en un proceso con baja huella de carbono. La ruta química para síntesis de GNS a partir de CO2 e H2 es una reacción catalítica que se conoce como metanación de CO2 o reacción de Sabatier. La metanación es un ejemplo de aplicación industrial de las tecnologías de captura y utilización de CO2 en lo que también se conoce como el contexto Power-to-Methane (PtM). En ese ámbito, los reactores de lecho fijo han sido la tecnología de reacción utilizada por defecto. Sin embargo, se ha demostrado su incapacidad para manejar el calor liberado producto de la reacción de Sabatier (altamente exotérmica), o de responder apropiadamente a la intermitencia del proceso. Estas dificultades han despertado el interés científico por desarrollar reactores que se adapten mejor a las exigencias del contexto PtM. Una propuesta yace en intensificar el proceso de metanación, incrementando la transferencia de masa y energía además de mejorar su respuesta transitoria. En este proyecto se estudió, por un lado, la formación fenomenológica de puntos calientes en reactores de lecho fijo utilizados industrialmente para el proceso de metanación a través de un análisis de sensibilidad paramétrico, simulando el arranque del reactor. Por el otro lado, se propuso un diseño conceptual asistido por simulación CFD de un reactor de pared recubierta para la producción de GNS a través de una estrategia de intensificación. El diseño partió de un reactor formado por platos apilados de intercambio de calor de un solo paso. Se definieron las dimensiones del canal de reacción, incluyendo el grosor de la capa catalítica, que cumplían con el umbral mínimo de calidad dado por la conversión de CO2 (≥ 95%). El diseño propuesto también tuvo por objeto maximizar el volumen de gas procesado, cumpliendo a la vez con el requisito de calidad, lo que resultó en un rendimiento por canal de reacción de ~12 ml/min. Así mismo se estableció la geometría y dimensiones del colector del plato que mejor favorecían una distribución uniforme de la velocidad del flujo en función del número de canales de reacción. Por último, se realizó un análisis dinámico preliminar del arranque y apagado de la operación, estableciendo que el reactor diseñado no presenta un comportamiento de histéresis, ideal para un entorno con alta intermitencia. Palabras clave: Captura y Utilización de Carbono, Diseño asistido por CFD, Formación de Puntos calientes, Intensificación de Procesos, Power-to-Methane, Reactor de Lecho Fijo. _____________________________________________________________________________________ Design of an Intensified Reactor for the Synthetic Natural Gas Production iv | P a g e through Methanation in the Carbon Capture and Utilization Context. Santiago Ortiz Laverde (2020) ABSTRACT ................................................................................................................................ iii RESUMEN .................................................................................................................................. iv List of Figures ........................................................................................................................... viii List of Tables ............................................................................................................................... x CONTENT DOCUMENT STRUCTURE ................................................................................................... 1 RESEARCH CONTRIBUTIONS AND DISTINCTIONS ............................................... 2 CHAPTER 1: Overview .............................................................................................................. 3 1.1 Introduction and State of the Art .......................................................................................... 4 1.2 Baseline Theoretical Framework ........................................................................................... 6 1.2.1 Numerical approach ........................................................................................................... 8 1.2.2 Computational implementation .......................................................................................... 9 1.2.3 Analytical approach ......................................................................................................... 11 1.3 Nomenclature and abbreviations........................................................................................
Recommended publications
  • Fenics-Shells Release 2018.1.0
    FEniCS-Shells Release 2018.1.0 Aug 02, 2021 Contents 1 Subpackages 1 2 Module contents 13 3 Documented demos 15 4 FEniCS-Shells 61 Bibliography 65 Python Module Index 67 Index 69 i ii CHAPTER 1 Subpackages 1.1 fenics_shells.analytical package 1.1.1 Submodules 1.1.2 fenics_shells.analytical.lovadina_clamped module Analytical solution for clamped Reissner-Mindlin plate problem from Lovadina et al. 1.1.3 fenics_shells.analytical.simply_supported module Analytical solution for simply-supported Reissner-Mindlin square plate under a uniform transverse load. 1.1.4 fenics_shells.analytical.vonkarman_heated module Analytical solution for elliptic orthotropic von Karman plate with lenticular thickness subject to a uniform field of inelastic curvatures. fenics_shells.analytical.vonkarman_heated.analytical_solution(Ai, Di, a_rad, b_rad) 1 FEniCS-Shells, Release 2018.1.0 1.1.5 Module contents 1.2 fenics_shells.common package 1.2.1 Submodules 1.2.2 fenics_shells.common.constitutive_models module fenics_shells.common.constitutive_models.psi_M(k, **kwargs) Returns bending moment energy density calculated from the curvature k using: Isotropic case: .. math:: D = frac{E*t^3}{24(1 - nu^2)} W_m(k, ldots) = D*((1 - nu)*tr(k**2) + nu*(tr(k))**2) Parameters • k – Curvature, typically UFL form with shape (2,2) (tensor). • **kwargs – Isotropic case: E: Young’s modulus, Constant or Expression. nu: Poisson’s ratio, Constant or Expression. t: Thickness, Constant or Expression. Returns UFL form of bending stress tensor with shape (2,2) (tensor). fenics_shells.common.constitutive_models.psi_N(e, **kwargs) Returns membrane energy density calculated from e using: Isotropic case: .. math:: B = frac{E*t}{2(1 - nu^2)} N(e, ldots) = B(1 - nu)e + nu mathrm{tr}(e)I Parameters • e – Membrane strain, typically UFL form with shape (2,2) (tensor).
    [Show full text]
  • Fenics-HPC: Automated Predictive High-Performance Finite Element
    FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics Johan Hoffman1, Johan Jansson2, and Niclas Jansson3 1 Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden and BCAM - Basque Center for Applied Mathematics, Bilbao, Spain [email protected] 2 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain and Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden [email protected] 3 RIKEN Advanced Institute for Computational Science, Kobe, Japan [email protected] Abstract. Developing multiphysics finite element methods (FEM) and scalable HPC implementations can be very challenging in terms of soft- ware complexity and performance, even more so with the addition of goal-oriented adaptive mesh refinement. To manage the complexity we in this work present general adaptive stabilized methods with automated implementation in the FEniCS-HPC automated open source software framework. This allows taking the weak form of a partial differential equation (PDE) as input in near-mathematical notation and automati- cally generating the low-level implementation source code and auxiliary equations and quantities necessary for the adaptivity. We demonstrate new optimal strong scaling results for the whole adaptive framework applied to turbulent flow on massively parallel architectures down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend and for assembly down to 500 vertices per core with ca. 20000 cores with the PGAS-based JANPACK backend. As a demonstration of the high impact of the combination of the scalability together with the adaptive methodology allowing prediction of gross quantities in turbulent flow we present an application in aerodynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking workshop with good match to experiments.
    [Show full text]
  • The DUNE-Fem-DG Framework
    Extendible and Efficient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods Andreas Dedner, Robert Klofkorn¨ ∗ Abstract This paper discusses a Python interface for the recently published DUNE-FEM- DG module which provides highly efficient implementations of the Discontinuous Galerkin (DG) method for solving a wide range of non linear partial differential equations (PDE). Although the C++ interfaces of DUNE-FEM-DG are highly flexible and customizable, a solid knowledge of C++ is necessary to make use of this powerful tool. With this work easier user interfaces based on Python and the Unified Form Language are provided to open DUNE-FEM-DG for a broader audience. The Python interfaces are demonstrated for both parabolic and first order hyperbolic PDEs. Keywords DUNE,DUNE-FEM, Discontinuous Galerkin, Finite Volume, Python, Advection-Diffusion, Euler, Navier-Stokes MSC (2010): 65M08, 65M60, 35Q31, 35Q90, 68N99 In this paper we introduce a Python layer for the DUNE-FEM-DG1 module [14] which is available open-source. The DUNE-FEM-DG module is based on DUNE [5] and DUNE- FEM [20] in particular and makes use of the infrastructure implemented by DUNE-FEM for seamless integration of parallel-adaptive Finite Element based discretization methods. DUNE-FEM-DG focuses exclusively on Discontinuous Galerkin (DG) methods for var- ious types of problems. The discretizations used in this module are described by two main papers, [17] where we introduced a generic stabilization for convection dominated problems that works on generally unstructured and non-conforming grids and [9] where we introduced a parameter independent DG flux discretization for diffusive operators.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA FACULDADE DE ARQUITETURA PROGRAMA DE PÓS-GRADUAÇÃO EM DESIGN Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DE INTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Dissertação de Mestrado Porto Alegre 2020 EDUARDO DA CUNDA FERNANDES Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de estruturas tridimensionais por barras Dissertação apresentada ao Programa de Pós- Graduação em Design da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Mestre em Design. Orientador: Prof. Dr. Fábio Gonçalves Teixeira Porto Alegre 2020 Catalogação da Publicação Fernandes, Eduardo da Cunda DESIGN NO DESENVOLVIMENTO DE UM PROJETO DEINTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras / Eduardo da Cunda Fernandes. -- 2020. 230 f. Orientador: Fábio Gonçalves Teixeira. Dissertação (Mestrado) -- Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Programa de Pós- Graduação em Design, Porto Alegre, BR-RS, 2020. 1. Design de Interface. 2. Análise Estrutural. 3.Modelagem Preditiva do Comportamento Humano. 4.Heurísticas da Usabilidade. 5. KLM-GOMS. I. Teixeira, Fábio Gonçalves, orient. II. Título. FERNANDES, E. C. Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras. 2020. 142 f. Dissertação (Mestrado em Design) – Escola de Engenharia / Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2020. Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DED INTERFACE: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Esta Dissertação foi julgada adequada para a obtenção do Título de Mestre em Design, e aprovada em sua forma final pelo Programa de Pós-Graduação em Design da UFRGS.
    [Show full text]
  • Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods
    Abstractions and automated algorithms for mixed domain finite element methods CÉCILE DAVERSIN-CATTY, Simula Research Laboratory, Norway CHRIS N. RICHARDSON, BP Institute, University of Cambridge, United Kingdom ADA J. ELLINGSRUD, Simula Research Laboratory, Norway MARIE E. ROGNES, Simula Research Laboratory, Norway Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology and fracture mechanics. Mixed dimensional PDEs arealso commonly encountered when imposing non-standard conditions over a subspace of lower dimension e.g. through a Lagrange multiplier. In this paper, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of co-dimension up to one (i.e. nD-mD with jn −mj 6 1). We introduce high level mathematical software abstractions together with lower level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have alsobeen implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models and a model for ionic electrodiffusion. CCS Concepts: • Mathematics of computing → Solvers; Partial differential equations; • Computing methodologies → Modeling methodologies. Additional Key Words and Phrases: FEniCS project, mixed dimensional, mixed domains, mixed finite elements 1 INTRODUCTION Mixed dimensional partial differential equations (PDEs) are systems of differential equations coupling solution fields defined over domains of different topological dimensions. Problem settings that call for such equations are in abundance across the natural sciences [27, 47], in multi-physics problems [13, 48], and in mathematics [8, 29].
    [Show full text]
  • Coupling Fenics and Openfoam Via Precice
    MUNICH SCHOOL OF ENGINEERING TECHNICAL UNIVERSITY OF MUNICH Bachelor’s Thesis in Engineering Science Chair of Scientific Computing, Department of Informatics Partitioned Fluid Structure Interaction: Coupling FEniCS and OpenFOAM via preCICE Richard Hertrich MUNICH SCHOOL OF ENGINEERING TECHNICAL UNIVERSITY OF MUNICH Bachelor’s Thesis in Engineering Science Chair of Scientific Computing, Department of Informatics Partitioned Fluid Structure Interaction: Coupling FEniCS and OpenFOAM via preCICE Partitionierte Fluid Struktur Wechselwirkung: Ein gekoppelter Ansatz mit FEniCS, OpenFOAM und preCICE Author: Richard Hertrich Supervisor: Prof. Dr. Hans-Joachim Bungartz Advisor: M.Sc. (hons) Benjamin Rüth Submission Date: September 27, 2019 I confirm that this bachelor’s thesis in engineering science is my own work and I have documented all sources and material used. Munich, September 27, 2019 Richard Hertrich Abstract In partitioned fluid structure interaction, a structure solver and a fluid solver are coupled via boundary conditions at the interface. This thesis presents partitioned FSI simulations using OpenFOAM for the fluid, preCICE as a coupling tool, and a structure solver I developed with the FEM library FEniCS. I extended the preCICE- FEniCS adapter to match the requirements for FSI, such that users can couple FEniCS simulations with vector functions and read conservatively mapped quantities from preCICE to a FEniCS solver. Plus, the adapter now features a mapping between pseudo-3D OpenFOAM and 2D FEniCS. The setup is tested with two FSI scenarios: An elastic flap in a channel and the FSI3 benchmark. I compare the results to validated partitioned FSI methods and reference results in literature to validate the preCICE-FEniCS adapter and the structure solver.
    [Show full text]
  • Loads, Load Factors and Load Combinations
    Overall Outline 1000. Introduction 4000. Federal Regulations, Guides, and Reports Training Course on 3000. Site Investigation Civil/Structural Codes and Inspection 4000. Loads, Load Factors, and Load Combinations 5000. Concrete Structures and Construction 6000. Steel Structures and Construction 7000. General Construction Methods BMA Engineering, Inc. 8000. Exams and Course Evaluation 9000. References and Sources BMA Engineering, Inc. – 4000 1 BMA Engineering, Inc. – 4000 2 4000. Loads, Load Factors, and Load Scope: Primary Documents Covered Combinations • Objective and Scope • Minimum Design Loads for Buildings and – Introduce loads, load factors, and load Other Structures [ASCE Standard 7‐05] combinations for nuclear‐related civil & structural •Seismic Analysis of Safety‐Related Nuclear design and construction Structures and Commentary [ASCE – Present and discuss Standard 4‐98] • Types of loads and their computational principles • Load factors •Design Loads on Structures During • Load combinations Construction [ASCE Standard 37‐02] • Focus on seismic loads • Computer aided analysis and design (brief) BMA Engineering, Inc. – 4000 3 BMA Engineering, Inc. – 4000 4 Load Types (ASCE 7‐05) Load Types (ASCE 7‐05) • D = dead load • Lr = roof live load • Di = weight of ice • R = rain load • E = earthquake load • S = snow load • F = load due to fluids with well‐defined pressures and • T = self‐straining force maximum heights • W = wind load • F = flood load a • Wi = wind‐on‐ice loads • H = ldload due to lllateral earth pressure, ground water pressure,
    [Show full text]
  • Hierarchical a Posteriori Error Estimation of Bank-Weiser Type in the Fenics Project Raphaël Bulle, Jack Hale, Alexei Lozinski, Stéphane Bordas, Franz Chouly
    Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project Raphaël Bulle, Jack Hale, Alexei Lozinski, Stéphane Bordas, Franz Chouly To cite this version: Raphaël Bulle, Jack Hale, Alexei Lozinski, Stéphane Bordas, Franz Chouly. Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project. 2021. hal-03137595 HAL Id: hal-03137595 https://hal.archives-ouvertes.fr/hal-03137595 Preprint submitted on 10 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hierarchical a posteriori error estimation of Bank–Weiser type in the FEniCS Project∗ Raphaël Bulle† Jack S. Hale† Alexei Lozinski‡ Stéphane P. A. Bordas† Franz Chouly§ February 10, 2021 Abstract. In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp. 283–301] a new a posteriori estimator was introduced. This estimator requires the solution of a local Neumann problem on every cell of the finite element mesh. Despite the promise of Bank– Weiser type estimators, namely locality, computational efficiency, and asymptotic sharpness, they have seen little use in practical computational problems. The focus of this contribution is to describe a novel implementation of hierarchical estimators of the Bank–Weiser type in a modern high-level finite element software with automatic code generation capabilities.
    [Show full text]
  • A Cross-Sectional Aeroelastic Analysis and Structural Optimization Tool For
    Composite Structures 253 (2020) 112755 Contents lists available at ScienceDirect Composite Structures journal homepage: www.elsevier.com/locate/compstruct A cross-sectional aeroelastic analysis and structural optimization tool for slender composite structures ⇑ Roland Feil a, , Tobias Pflumm b, Pietro Bortolotti a, Marco Morandini c a National Renewable Energy Laboratory, Boulder, Colorado, USA b Technical University of Munich, Germany c Politecnico di Milano, Italy ARTICLE INFO ABSTRACT Keywords: A fully open‐source available framework for the parametric cross‐sectional analysis and design optimization of SONATA slender composite structures, such as helicopter or wind turbine blades, is presented. The framework— VABS Structural Optimization and Aeroelastic Analysis (SONATA)—incorporates two structural solvers, the commer- ANBA4 cial tool VABS, and the novel open‐source code ANBA4. SONATA also parameterizes the design inputs, post- Parametric design framework processes and visualizes the results, and generates the structural inputs to a variety of aeroelastic analysis Composite structures tools. It is linked to the optimization library OpenMDAO. This work presents the methodology and explains the fundamental approaches of SONATA. Structural characteristics were successfully verified for both VABS and ANBA4 using box beam examples from literature, thereby verifying the parametric approach to generating the topology and mesh in a cross section as well as the solver integration. The framework was furthermore exercised by analyzing and evaluating a fully resolved highly flexible wind turbine blade. Computed structural characteristics correlated between VABS and ANBA4, including off‐diagonal terms. Stresses, strains, and defor- mations were recovered from loads derived through coupling with aeroelastic analysis. The framework, there- fore, proves effective in accurately analyzing and optimizing slender composite structures on a high‐fidelity level that is close to a three‐dimensional finite element model.
    [Show full text]
  • Numerical Modeling and Experimental Investigation of Fine Particle Coagulation and Dispersion in Dilute Flows Bart Janssens
    Numerical modeling and experimental investigation of fine particle coagulation and dispersion in dilute flows Bart Janssens To cite this version: Bart Janssens. Numerical modeling and experimental investigation of fine particle coagulation and dispersion in dilute flows. Mechanics [physics.med-ph]. Université de La Rochelle, 2014. English. NNT : 2014LAROS014. tel-01175006 HAL Id: tel-01175006 https://tel.archives-ouvertes.fr/tel-01175006 Submitted on 10 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VON KARMAN INSTITUTE FOR FLUID DYNAMICS TURBOMACHINERY &PROPULSION DEPARTMENT UNIVERSITE´ DE LA ROCHELLE - UFR SCIENCE ET TECHNOLOGIE ECOLE DOCTORALE SCIENCES ET INGENIERIE´ EN MATERIAU´ ,MECANIQUE´ , ENERG´ ETIQUE´ ET AERONAUTIQUE´ LABORATOIRE DES SCIENCES DE L’INGENIEUR´ POUR L’ENVIRONNEMENT ROYAL MILITARY ACADEMY DEPARTMENT OF MECHANICAL ENGINEERING Numerical modeling and experimental investigation of fine particle coagulation and dispersion in dilute flows Cover art: Particle-laden turbulent channel flow, with vertical cuts and streamlines colored by streamwise particle velocity and the bottom wall colored by particle concentration. Thesis presented by Bart Janssens in order to obtain the degree of “Doctor of Philosophy in Applied Sciences - Mechanics”, Universite´ de la Rochelle, France and Royal Military Academy, Belgium, 10th of July 2014.
    [Show full text]
  • Automated Computational Modelling for Complicated Partial Differential Equations
    Automated computational modelling for complicated partial differential equations Automated computational modelling for complicated partial differential equations Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 3 december 2013 om 12.30 uur door Kristian Breum ØLGAARD Master of Science in Civil Engineering, Aalborg Universitet Esbjerg geboren te Ringkøbing, Denemarken Dit proefschrift is goedgekeurd door de promotor: Prof. dr. ir. L. J. Sluys Copromotor: Dr. G. N. Wells Samenstelling promotiecommissie: Rector Magnificus Voorzitter Prof. dr. ir. L. J. Sluys Technische Universiteit Delft, promotor Dr. G. N. Wells University of Cambridge, copromotor Dr. ir. M. B. van Gijzen Technische Universiteit Delft Prof. dr. P. H. J. Kelly Imperial College London Prof. dr. R. Larsson Chalmers University of Technology Prof. dr. L. R. Scott University of Chicago Prof. dr. ir. C. Vuik Technische Universiteit Delft Prof. dr. A. Scarpas Technische Universiteit Delft, reservelid Copyright © 2013 by K. B. Ølgaard Printed by Ipskamp Drukkers B.V., Enschede, The Netherlands ISBN 978-94-6191-990-8 Foreword This thesis represents the formal end of my long and interesting journey as a PhD student. The sum of many experiences over the past years has increased my knowledge and contributed to my personal development. All these experiences originate from the interaction with many people to whom I would like to express my gratitude. I am most grateful to Garth Wells for giving me the opportunity to come to Delft and to study under his competent supervision.
    [Show full text]
  • Numerical Analysis, Modelling and Simulation
    Numerical Analysis, Modelling and Simulation Griffin Cook Numerical Analysis, Modelling and Simulation Numerical Analysis, Modelling and Simulation Edited by Griffin Cook Numerical Analysis, Modelling and Simulation Edited by Griffin Cook ISBN: 978-1-9789-1530-5 © 2018 Library Press Published by Library Press, 5 Penn Plaza, 19th Floor, New York, NY 10001, USA Cataloging-in-Publication Data Numerical analysis, modelling and simulation / edited by Griffin Cook. p. cm. Includes bibliographical references and index. ISBN 978-1-9789-1530-5 1. Numerical analysis. 2. Mathematical models. 3. Simulation methods. I. Cook, Griffin. QA297 .N86 2018 518--dc23 This book contains information obtained from authentic and highly regarded sources. All chapters are published with permission under the Creative Commons Attribution Share Alike License or equivalent. A wide variety of references are listed. Permissions and sources are indicated; for detailed attributions, please refer to the permissions page. Reasonable efforts have been made to publish reliable data and information, but the authors, editors and publisher cannot assume any responsibility for the validity of all materials or the consequences of their use. Copyright of this ebook is with Library Press, rights acquired from the original print publisher, Larsen and Keller Education. Trademark Notice: All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy.
    [Show full text]