Design of an Intensified Reactor for the Synthetic Natural Gas Production Through Methanation in the Carbon Capture and Utilization Context
Total Page:16
File Type:pdf, Size:1020Kb
Design of an Intensified Reactor for the Synthetic Natural Gas Production through Methanation in the Carbon Capture and Utilization Context Santiago Ortiz Laverde Chemical Engineer Submitted in the fulfilment of the requirements for the degree of Master in Process Design and Management Advisor: Manuel Alfredo Figueredo Medina, M.Sc. Co-advisors: Camilo Rengifo Gutiérrez, Ph.D. Martha Isabel Cobo Ángel, Ph.D. Maestría en Diseño y Gestión de Procesos Faculty of Engineering Universidad de La Sabana Chía, Colombia 2020 DEDICATION To my parents and brother, to whom I owe everything in my life. i ACKNOWLEDGMENTS First of all, I am grateful to Universidad de La Sabana, an institution that has immensely funded my education as a professional, magister, and human being. Further, many people have contributed to my formation in these past two years. Nevertheless, some of them are worth mentioning here. I would first like to acknowledge my advisor, Professor Manuel Figueredo, mostly because he has always believed in me from the beginning and despite all the obstacles along the way. Second to Professor Camilo Rengifo, not only because of his lectures in applied mathematics but also because he has motivated me until the end. Third, to Professor Martha Cobo, for encouraging my involvement in this project and whom I am simply honoured to have as co-advisor. Fourth, to Professors William Oquendo and Mario Noriega, who have set a precedent in my academic formation and whom I deeply admire. Fifth, to Dr Néstor Sánchez, whose true friendship has accompanied me during this journey. Finally, I want to thank Universidad Nacional de Colombia for opening its doors to me in the master’s program, showing me the genuine rigour required to be qualified as a chemical engineer. ii ABSTRACT The idea of a sustainable future has led to the exclusion of fossil fuels from development policies and the inclusion of low-carbon alternatives instead. The strategy must be holistic, as proposed by the carbon capture and utilization technologies alongside renewable energies. An example is converting CO2 into value-added products, such as CH4 or Synthetic Natural Gas (SNG), using surplus power of renewable alternatives, in a low-carbon footprint process. The chemical route for the synthesis of SNG from CO2 and H2 is a catalytic reaction known as CO2 methanation or Sabatier reaction. The methanation is an example of CO2 capture and utilization technologies' industrial application within the so-called Power-to-Methane (PtM) context. In this scenario, fixed bed reactors have been the reaction technology employed by default. However, their deficiency in handling the heat released from the highly exothermic Sabatier reaction or responding to the process' intermittency appropriately has been demonstrated. These drawbacks have aroused scientific interest in developing reactors better adapted to the PtM context demands. One approach is by intensifying the methanation process to increase the mass- and energy-transfer and improve its transient response. In this project, the phenomenological hot spots formation in fixed bed reactors used for the methanation industrial process was investigated through a parametric sensitivity analysis, simulating the reactor start-up. On the other hand, it was proposed a CFD simulation-aided conceptual design of a wall-coated reactor for the SNG production using an intensification strategy. The design was based on a reactor formed by single-pass and heat-exchanger stacked- plates. The reacting channel dimensions were defined, including the catalytic layer thickness, fulfilling a minimum quality threshold given by the CO2 conversion (≥ 95%). The proposed design was also intended to maximize the volume of processed gas while meeting the quality requirement, resulting in a throughput per reaction channel of ~12 ml/min. Likewise, the plates manifold geometry and dimensions that best promoted a flow rate uniform distribution were established as a function of the number of reacting channels. Finally, a preliminary dynamic analysis of the operation start-up and shutdown was performed, establishing that the designed reactor does not present a hysteresis behaviour, an ideal condition for intermittent environments. Keywords: Carbon Capture and Utilization, CFD-aided Design, Fixed-bed Reactor, Hot spots Formation, Power-to-Methane, Process Intensification. _____________________________________________________________________________________ Design of an Intensified Reactor for the Synthetic Natural Gas Production iii | P a g e through Methanation in the Carbon Capture and Utilization Context. Santiago Ortiz Laverde (2020) RESUMEN La idea de un futuro sostenible ha conllevado a suprimir el uso de combustibles de origen fósil de los planes de desarrollo y por el contrario incluir alternativas con baja huella de carbono. La estrategia debe ser holística, como lo proponen las tecnologías de captura y utilización de CO2 junto con las energías renovables. Un ejemplo es la conversión del CO2 en productos con valor agregado, como el CH4 o Gas Natural Sintético (GNS), utilizando la energía sobrante de las alternativas renovables, en un proceso con baja huella de carbono. La ruta química para síntesis de GNS a partir de CO2 e H2 es una reacción catalítica que se conoce como metanación de CO2 o reacción de Sabatier. La metanación es un ejemplo de aplicación industrial de las tecnologías de captura y utilización de CO2 en lo que también se conoce como el contexto Power-to-Methane (PtM). En ese ámbito, los reactores de lecho fijo han sido la tecnología de reacción utilizada por defecto. Sin embargo, se ha demostrado su incapacidad para manejar el calor liberado producto de la reacción de Sabatier (altamente exotérmica), o de responder apropiadamente a la intermitencia del proceso. Estas dificultades han despertado el interés científico por desarrollar reactores que se adapten mejor a las exigencias del contexto PtM. Una propuesta yace en intensificar el proceso de metanación, incrementando la transferencia de masa y energía además de mejorar su respuesta transitoria. En este proyecto se estudió, por un lado, la formación fenomenológica de puntos calientes en reactores de lecho fijo utilizados industrialmente para el proceso de metanación a través de un análisis de sensibilidad paramétrico, simulando el arranque del reactor. Por el otro lado, se propuso un diseño conceptual asistido por simulación CFD de un reactor de pared recubierta para la producción de GNS a través de una estrategia de intensificación. El diseño partió de un reactor formado por platos apilados de intercambio de calor de un solo paso. Se definieron las dimensiones del canal de reacción, incluyendo el grosor de la capa catalítica, que cumplían con el umbral mínimo de calidad dado por la conversión de CO2 (≥ 95%). El diseño propuesto también tuvo por objeto maximizar el volumen de gas procesado, cumpliendo a la vez con el requisito de calidad, lo que resultó en un rendimiento por canal de reacción de ~12 ml/min. Así mismo se estableció la geometría y dimensiones del colector del plato que mejor favorecían una distribución uniforme de la velocidad del flujo en función del número de canales de reacción. Por último, se realizó un análisis dinámico preliminar del arranque y apagado de la operación, estableciendo que el reactor diseñado no presenta un comportamiento de histéresis, ideal para un entorno con alta intermitencia. Palabras clave: Captura y Utilización de Carbono, Diseño asistido por CFD, Formación de Puntos calientes, Intensificación de Procesos, Power-to-Methane, Reactor de Lecho Fijo. _____________________________________________________________________________________ Design of an Intensified Reactor for the Synthetic Natural Gas Production iv | P a g e through Methanation in the Carbon Capture and Utilization Context. Santiago Ortiz Laverde (2020) ABSTRACT ................................................................................................................................ iii RESUMEN .................................................................................................................................. iv List of Figures ........................................................................................................................... viii List of Tables ............................................................................................................................... x CONTENT DOCUMENT STRUCTURE ................................................................................................... 1 RESEARCH CONTRIBUTIONS AND DISTINCTIONS ............................................... 2 CHAPTER 1: Overview .............................................................................................................. 3 1.1 Introduction and State of the Art .......................................................................................... 4 1.2 Baseline Theoretical Framework ........................................................................................... 6 1.2.1 Numerical approach ........................................................................................................... 8 1.2.2 Computational implementation .......................................................................................... 9 1.2.3 Analytical approach ......................................................................................................... 11 1.3 Nomenclature and abbreviations........................................................................................