London Society for Promoting Christian Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

London Society for Promoting Christian Knowledge L O N D O N S O C I E T " F O R P R O M O T I N G C H R I S T I A N K N O W L E D G E N EW "O RK : TH E MACM ILL AN CO M PAN" CO NT ENT S PART I G RE E K AS T RO NO M " T O A RIS TARC H US T HALE S ANA"I M A NDER ANA"I M EN E S P"THAG ORA S PAR M ENI DE S ANA"A G O RA S E M PED OC LE S TH E P"THAG OREAN S (E N OP ID E S O F (am o s PLAT O E O" S CALL IPP S A R IST OTLE UD U , U , H E RA C LID E S O F PON S TU . PART II ARIS TARC H US O F SA M O S TH E HELIOCE NTR IC H"POTH ES I S O N T H E APPARE NT DIA M ETE R O F T H E S UN O N TH E S I Z E S AND DIST AN C E S O F T H E S UN AND M O O N O N T H E "EAR AND “ G R EAT "E AR ’ L ATER I M PR OVEM E NT S O N ARI STARC H US S FIG URE S B IB LI OG RAPH" C HRO NOLO G" PA RT I. H GREEK ASTRONOMY TO ARISTARC US . T HE title - page of this bo ok necessarily bears the name o f e o r o n man but the reader will find in its pages the story , part of the story, of many other Pioneers Of Progress . The crowning achievem ent Of anticipating the hypothesis Of Copernicus belongs to Aristarchus Of Samos alone ; but to see it in its proper setting it is necessary to have f o f ollowed in the footsteps the earlier pioneers who, by l one bold specu ation after another, brought the solution one of the problem nearer, though no before Aristarchus actually hit upon the truth . Thi s is why the writer has thought it useful to prefix to his account Of Aristarchus a short sketch Of the history o f the development o f ’ astronomy in Greece down to Aristarchus s time , which i s indeed the most fascinating portion o f the sto ry o f Greek astronomy . The extraordin a ry advance in astronomy made by the . Greeks in a period o f little more than three centuries t is a wor hy parallel to the rapid development , in thei r O f hands , pure geometry, which , created by them as a theoretical science about the same time, had by the time ’ o fA ri sta rchu s covered the ground Ofthe Elements (includ ing solid geometry and the geometry of the sphere) , had o f established the main properties the three conic sections , had solved problems which were beyond the geometry of o f the straight line and circle , and finally, before the end 2 ARISTARCH US OF SAMOS ' eh r E C thethird é €uy . had been carried to its highest ' er e i n J eni s p f c t p by the g u of Archimedes , who measured the areas OI curves and the surfaces and volumes o f curved surfaces by geometrical methods practically anti ci pa ting the integral calcul us . To understand how all this was possible we have to - remember that the Greeks , pre eminently among all the O f nations the world , possessed just those gifts which are essential to the initiation and development of philosophy and science. They had in the first place a remarkable power of accurate observation ; and to this were added s clearnes Of intellect to see things as they are , a passion o f fo r a nd ate love knowledge its own sake , a genius for speculation which stands unrivalled to this day. Nothing that is perceptible to the senses seems to have escaped them ; and when the apparent facts had been accurately w/z ascertained , they wanted to know the y and the where ore f , never resting satisfied until they had given a x rational e planation , or what seemed to them to be such , o r x o f the phenomena observed . O bservation e periment SO and theory went hand in hand . it was that they developed such subjects as medicine and astronomy . In h astronomy t eir guiding principle was , in their own ex ” pressive words , to save the phenomena This meant that , as more and more facts became known , their theories . were, continually revised to fit them It would be easy to multiply instances ; it must o ne suffice in this place to mention , which illustrates not only the certainty with which the Greeks detected the f occurrence o even the rarest phenomena , but also the persistence with which they sought for the true ex planation . med s A D . s Cleo e (second century . ) mention that there “ were stories o f e xtraordinary eclipses which the more ancient o f the mathematicians had vainly tried to GREEK ASTRONOMY TO \ ARISTARCH US 3 “ explain ; the supposed paradoxical case was that in “ to which , while the sun seems be still above the western i d o r z ecl se t . ho i on , the p moon i s seen rise in the east The phenomenon appeared to be inconsistent with the explanation o f lunar eclipses by the entry o f. the mOo n ’ into the earth s shadow ; how could this be i f both bodies were above the hori z on at the same time ? The ” “ more ancient mathematicians essayed a geometrical explanation ; they tried to argue that it was possible that a spectator standing o n an emi nence o f the spherical f e o cone L . earth might see along the generators a , a little downwards o n all sides instead o f merely in the o f plane the horizon , and so might see both the sun and ’ the moon even when the latter was i n the earth s leo med es shadow . C denies this and prefers to regard the whole story Of such cases as a fiction designed merely fo r the purpose Of plaguing astronomers and philosophers no a no m a thema Chald ean , he says , Egyptian , and no o r ticlan philosopher has recorded such a case . But the phenomenon is possible, and it is certain that it had been observed in Greece and that the Greek astronomers did no t rest until they had found o ut the solution of the z z fo r Cleo med es x pu le ; himself gives the e planation , namely that the phenomenon is due to atmospheric re f fraction . O bserving that such cases O atmospheric refraction were especially noticeable in the neighbour O f Cleo m ed es on hood the Black Sea , goes to say that it is possible that the visual rays going o ut from o u r eyes o n are refracted through falling wet and damp air, and so reach the sun although it is already below the horizon and he compares the well - known experiment o f the ring o f o u t O f at the bottom a jug, where the ring, just sight V when the jug is empty, is brought into iew when water is poured in . o f a wa s The genius the race being wh t it , the Greeks 4 ARISTARCH US OF SAMOS must from the earliest times have been in the habit of scanning the heavens, and, as might be expected , we find the beginnings of astronomical knowledge in the earliest Greek literature . In the H omeric poems and in Hesiod the earth is a n O flat circular disc ; round this disc ru s the river ceanus , encircling the earth and flowing back into itsel f. The o f flat earth has above it the vault heaven , like a sort o f hemispherical dome exactly covering it ; this vault remains for ever in one position ; the sun , moon and O the stars move round under it, rising from ceanus in east and plunging into it again in the west . Homer mentions, in addition to the sun and moon , the Morning Star , the Evening Star, the Pleiades , the H O “ yades , rion , the Great Bear ( which is also called by o f l - B o Otes the name the Wain Sirius , the ate setting i e , . , (the ploughman driving the , Wain) Arcturus as it s f H was fir t called by Hesiod . O the Great Bear omer says that it turns round o n the same spot and watches ’ i e O rion ; it alone is without lot in O ceanus s bath ( . o to it never sets) . With regard t the last statement it is be noted that some of the principal stars O f the Great in e. Bear do now set in the Mediterranean , g . places R further south than hodes (lat . y , the hind foot , o f x and the tip the tail , and at Ale andria all the x a . seven stars e cept , the head It might be supposed ” that here was a case of H omer nodding B ut no ; the Old poet was perfectly right the difference between the facts as Observed by him a nd as seen by us respectively o f is due to the Precession the Equinoxes , the gradual movement o f the fixed stars them selves about the pole Of H the ecliptic, which was discovered by ipparchus (second B century C ) .
Recommended publications
  • A Philosophical and Historical Analysis of Cosmology from Copernicus to Newton
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton Manuel-Albert Castillo University of Central Florida Part of the History of Science, Technology, and Medicine Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castillo, Manuel-Albert, "Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton" (2017). Electronic Theses and Dissertations, 2004-2019. 5694. https://stars.library.ucf.edu/etd/5694 SCIENTIFIC TRANSFORMATIONS: A PHILOSOPHICAL AND HISTORICAL ANALYSIS OF COSMOLOGY FROM COPERNICUS TO NEWTON by MANUEL-ALBERT F. CASTILLO A.A., Valencia College, 2013 B.A., University of Central Florida, 2015 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the department of Interdisciplinary Studies in the College of Graduate Studies at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Donald E. Jones ©2017 Manuel-Albert F. Castillo ii ABSTRACT The purpose of this thesis is to show a transformation around the scientific revolution from the sixteenth to seventeenth centuries against a Whig approach in which it still lingers in the history of science. I find the transformations of modern science through the cosmological models of Nicholas Copernicus, Johannes Kepler, Galileo Galilei and Isaac Newton.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Mathematical Discourse in Philosophical Authors: Examples from Theon of Smyrna and Cleomedes on Mathematical Astronomy
    Mathematical discourse in philosophical authors: Examples from Theon of Smyrna and Cleomedes on mathematical astronomy Nathan Sidoli Introduction Ancient philosophers and other intellectuals often mention the work of mathematicians, al- though the latter rarely return the favor.1 The most obvious reason for this stems from the im- personal nature of mathematical discourse, which tends to eschew any discussion of personal, or lived, experience. There seems to be more at stake than this, however, because when math- ematicians do mention names they almost always belong to the small group of people who are known to us as mathematicians, or who are known to us through their mathematical works.2 In order to be accepted as a member of the group of mathematicians, one must not only have mastered various technical concepts and methods, but must also have learned how to express oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be- cause of the specialized nature of this type of intellectual activity, in order to gain real mastery it was probably necessary to have studied it from youth, or to have had the time to apply oneself uninterruptedly.4 Hence, the private nature of ancient education meant that there were many educated individuals who had not mastered, or perhaps even been much exposed to, aspects of ancient mathematical thought and practice that we would regard as rather elementary (Cribiore 2001; Sidoli 2015). Starting from at least the late Hellenistic period, and especially during the Imperial and Late- Ancient periods, some authors sought to address this situation in a variety of different ways— such as discussing technical topics in more elementary modes, rewriting mathematical argu- ments so as to be intelligible to a broader audience, or incorporating mathematical material di- rectly into philosophical curricula.
    [Show full text]
  • Alexander Jones Calendrica I: New Callippic Dates
    ALEXANDER JONES CALENDRICA I: NEW CALLIPPIC DATES aus: Zeitschrift für Papyrologie und Epigraphik 129 (2000) 141–158 © Dr. Rudolf Habelt GmbH, Bonn 141 CALENDRICA I: NEW CALLIPPIC DATES 1. Introduction. Callippic dates are familiar to students of Greek chronology, even though up to the present they have been known to occur only in a single source, Ptolemy’s Almagest (c. A.D. 150).1 Ptolemy’s Callippic dates appear in the context of discussions of astronomical observations ranging from the early third century B.C. to the third quarter of the second century B.C. In the present article I will present new attestations of Callippic dates which extend the period of the known use of this system by almost two centuries, into the middle of the first century A.D. I also take the opportunity to attempt a fresh examination of what we can deduce about the Callippic calendar and its history, a topic that has lately been the subject of quite divergent treatments. The distinguishing mark of a Callippic date is the specification of the year by a numbered “period according to Callippus” and a year number within that period. Each Callippic period comprised 76 years, and year 1 of Callippic Period 1 began about midsummer of 330 B.C. It is an obvious, and very reasonable, supposition that this convention for counting years was instituted by Callippus, the fourth- century astronomer whose revisions of Eudoxus’ planetary theory are mentioned by Aristotle in Metaphysics Λ 1073b32–38, and who also is prominent among the authorities cited in astronomical weather calendars (parapegmata).2 The point of the cycles is that 76 years contain exactly four so-called Metonic cycles of 19 years.
    [Show full text]
  • Meet the Philosophers of Ancient Greece
    Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F.
    [Show full text]
  • Geminus and the Isia
    CORE Metadata, citation and similar papers at core.ac.uk Provided by DSpace at New York University GEMINUS AND THE ISIA ALEXANDER JONES T HE torical Greek interest, scientific including a lost writer treatise onGeminus the foundations wrote of several works of his- mathematics and an extant book on astronomy known as the Isagoge ("Introduction to the Phenomena"). The Isagoge is important to us as a witness to a stage of Greek astronomy that was both less advanced and less homogeneous in method than Ptolemy's. Approximate knowledge of when its author lived would be useful in several respects, for exam- ple in tracing the diffusion of elements originating in Babylonian lunar theory and in Hipparchus' work. Recent scholarship frequently cites Neugebauer's dating of Geminus to about A.D. 50, which has largely superseded the dating to the first half of the first century B.C. that used to be widely accepted.' Both dates derive, oddly enough, from analysis of the same passage in the Isagoge. The purpose of this note is to eluci- date the chronological issues, and to present documentary evidence that decisively establishes the earlier dating. The limits established by ancient citations are not very narrow. Isa- goge 4 mentions Hipparchus as an authority concerning constellations, and though Geminus does not say so, the lengths of the astronomical seasons listed in Isagoge I are the values that Hipparchus had used in deriving a model for the sun's motion. These passages cannot have been written before the 140s B.C. Moreover, Alexander of Aphrodisias (In Arist.
    [Show full text]
  • 10 · Greek Cartography in the Early Roman World
    10 · Greek Cartography in the Early Roman World PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe The Roman republic offers a good case for continuing to treat the Greek contribution to mapping as a separate CONTINUITY AND CHANGE IN THEORETICAL strand in the history ofclassical cartography. While there CARTOGRAPHY: POLYBIUS, CRATES, was a considerable blending-and interdependence-of AND HIPPARCHUS Greek and Roman concepts and skills, the fundamental distinction between the often theoretical nature of the Greek contribution and the increasingly practical uses The extent to which a new generation of scholars in the for maps devised by the Romans forms a familiar but second century B.C. was familiar with the texts, maps, satisfactory division for their respective cartographic in­ and globes of the Hellenistic period is a clear pointer to fluences. Certainly the political expansion of Rome, an uninterrupted continuity of cartographic knowledge. whose domination was rapidly extending over the Med­ Such knowledge, relating to both terrestrial and celestial iterranean, did not lead to an eclipse of Greek influence. mapping, had been transmitted through a succession of It is true that after the death of Ptolemy III Euergetes in well-defined master-pupil relationships, and the pres­ 221 B.C. a decline in the cultural supremacy of Alex­ ervation of texts and three-dimensional models had been andria set in. Intellectual life moved to more energetic aided by the growth of libraries. Yet this evidence should centers such as Pergamum, Rhodes, and above all Rome, not be interpreted to suggest that the Greek contribution but this promoted the diffusion and development of to cartography in the early Roman world was merely a Greek knowledge about maps rather than its extinction.
    [Show full text]
  • Ptolemy's Longitudes and Eratosthenes' Measurement of The
    NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 1 no. 1 2013 Mathematics and Mechanics of Complex Systems LUCIO RUSSO PTOLEMY’S LONGITUDES AND ERATOSTHENES’ MEASUREMENT OF THE EARTH’S CIRCUMFERENCE msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 1, No. 1, 2013 dx.doi.org/10.2140/memocs.2013.1.67 ∩ MM PTOLEMY’S LONGITUDES AND ERATOSTHENES’ MEASUREMENT OF THE EARTH’S CIRCUMFERENCE LUCIO RUSSO A statistical analysis of the longitudes reported in Ptolemy’s Geographia shows that many of them were obtained by distorting in a linear way data which were known with good accuracy. As a consequence, a new estimate of the value of the stadion used by Eratosthenes is obtained, supporting the thesis that his measurement of the Earth’s circumference was remarkably accurate. Some con- jectures about possible simplifications introduced by Cleomedes in his account of Eratosthenes’ method are also proposed. 1. The distortion of longitudes in Ptolemy’s Geographia The longitudes of 6345 localities1 reported by Ptolemy in his Geographia [Stückel- berger and Graßhoff 2006] are affected by an error which dilates their differences. While this error has been often remarked, it has not been so far analyzed in a quantitative way. The analysis of the distortion of the longitudes for all 6345 localities considered by Ptolemy is inconvenient for several reasons. First, many of the places are not identifiable with reasonable certainty. Furthermore for some regions the systematic error overlaps errors of different nature, due to the lack of knowledge of the country (this is the case, for example, for Indian localities).
    [Show full text]
  • Conclusion Full Article Language: En Indien Anders: Engelse Articletitle: 0
    _full_alt_author_running_head (neem stramien B2 voor dit chapter en dubbelklik nul hierna en zet 2 auteursnamen neer op die plek met and): 0 _full_articletitle_deel (kopregel rechts, vul hierna in): Conclusion _full_article_language: en indien anders: engelse articletitle: 0 496 Tihon Conclusion Anne Tihon When I agreed to write a conclusion to this Companion to Byzantine Science, I took on a perilous task. Each chapter of this book indeed contains an impres- sive amount of erudition, and each topic treated here would deserve in itself one or more separate volumes. However, reading the different chapters, a first remark comes to mind: it is time to stop apologizing for using the word “sci- ence” when studying Byzantine civilisation. The word “science”̕ may cover many different activities: study, teaching, creating manuals, commenting on scientific treatises, applying ancient or modern methods, conducting research, experiments and so on. There is no doubt that all the activities described in this volume fall into at least one of these categories. In spite of some received ideas, the Byzantine world was open to all kinds of intellectual activity, and especially to the scientific legacy from antiquity. This consists of a considerable number of writings which laid the foundation of science in the modern meaning of the word: Euclid, Apollonius, Archimedes, Diophantus, Ptolemy, Hippocrates, Galen, Dioscorides, including many more elementary treatises such as Autolycus, Theodosius, Geminus, Cleomedes and others. Everybody agrees that the Byzantines preserved this legacy; but they did much more than simply preserve it: they kept it alive. Some Byzantine scholars undertook considerable work in understanding and practising, for example, the astronomical exercises and calculations of Ptolemy.
    [Show full text]
  • The Presocratic Philosophers 16
    II Anaximander on Nature (a) Pantological knowledge Anaximander was a younger contemporary and a fellow-citizen of Thales; we need not accept the conventional statement that they were teacher and pupil, in order to believe that the younger man knew and was stimulated by his senior’s excogitations. Anaximander became ‘the first Greek whom we know to have produced a written account Concerning Nature’ (Themistius, 12 A 7).1 Of that work barely a dozen words have survived; but the doxography enables us to judge its scope and pretensions. It was vast: there was a cosmogony, or account of the original formation of the universe; a history of the earth and the heavenly bodies; an account of the development of living organisms; descriptions of natural phenomena of every sort, and infant studies of astronomy, meteorology and biology; and a geography illustrated by a celebrated mappa mundi. Nature, phusis, embraces every object of experience and every subject of rational inquiry except the productions of human contrivance; and the Presocratic systems of thought were generally spoken of as accounts Concerning Nature (PeriPhuseôs). An account concerning nature would begin with cosmogony, and proceed to a description of the celestial universe. It would investigate the development of the earth, of terrestrial life, and of the human animal; it would describe the clouds, the rains, and the winds, the rocky structure of the land, and the salt sea. It would rise from the inorganic to the organic, treating of topics botanical and zoological; it would look at the typology of species and the anatomy of individuals.
    [Show full text]
  • Theme 4: from the Greeks to the Renaissance: the Earth in Space
    Theme 4: From the Greeks to the Renaissance: the Earth in Space 4.1 Greek Astronomy Unlike the Babylonian astronomers, who developed algorithms to fit the astronomical data they recorded but made no attempt to construct a real model of the solar system, the Greeks were inveterate model builders. Some of their models—for example, the Pythagorean idea that the Earth orbits a celestial fire, which is not, as might be expected, the Sun, but instead is some metaphysical body concealed from us by a dark “counter-Earth” which always lies between us and the fire—were neither clearly motivated nor obviously testable. However, others were more recognisably “scientific” in the modern sense: they were motivated by the desire to describe observed phenomena, and were discarded or modified when they failed to provide good descriptions. In this sense, Greek astronomy marks the birth of astronomy as a true scientific discipline. The challenges to any potential model of the movement of the Sun, Moon and planets are as follows: • Neither the Sun nor the Moon moves across the night sky with uniform angular velocity. The Babylonians recognised this, and allowed for the variation in their mathematical des- criptions of these quantities. The Greeks wanted a physical picture which would account for the variation. • The seasons are not of uniform length. The Greeks defined the seasons in the standard astronomical sense, delimited by equinoxes and solstices, and realised quite early (Euctemon, around 430 BC) that these were not all the same length. This is, of course, related to the non-uniform motion of the Sun mentioned above.
    [Show full text]
  • Ptolemy's Maltese Co-Ordinates
    Ptolemy's Maltese Co-ordinates: A Re­ assessment - Frank Ventura On Inspiration - Michael Zammit The Philosophical Problem in Dostoevsky's Crime and Punishment - Paul Spiteri ~ Purgation in Plato and Dante - Charles Briffa Jfhe Heritage of Rome - Louis J. Scerri The Mediterranean Story-Telling Sailor: Odysseus and Sinbad - Peter Serracino Inglott General and Analytic Indexes Vols I - V Main Library Class Mark MIG No. of Volumes 111111111111111111111111111111111111111111111 *432916* 'Advanced The New I). copy, cents; numbers), Lm3.25,0, postage included. Back numbers, 55c. Other countries: please write for details. Volume V 1988 Number 6 CONTENTS Ptolemy's Maltese co-ordinates: A re-assessment Frank Ventura ......................... , ........................................................... 253 On Inspiration Michael Zammit ................................................................................... 270 The Philosophical Problem in Dostoevsky's Crime and Punishment Paul Spiteri ........................................................................................ 273 Purgation in Plato and Dante Charles Briffa ..................................................................................... 281 The Heritage of Rome Lous 1. Scerri ........................................................................... : ......... 285 The Mediterranean Story-Telling Sailor: Odysseus and Sinbad Peter Serracino Inglott .......................................................................... 289 Author and Analytical Title Indexes Vols
    [Show full text]