Mathematics and Cosmology in Plato's Timaeus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CURRICULUM VITA of ROBERT HAHN January 2015
CURRICULUM VITA OF ROBERT HAHN January 2015 I. PERSONAL A. Present University Department: Philosophy. II. EDUCATION Ph.D., Philosophy, Yale University, May 1976. M. Phil., Philosophy, Yale University, May 1976. M.A., Philosophy, Yale University, December 1975. B.A., Philosophy, Union College, Summa cum laude, June 1973. Summer Intensive Workshop in Ancient Greek, The University of California at Berkeley, 1973. Summer Intensive Workshop in Sanskrit, The University of Chicago, 1972. III. PROFESSIONAL EXPERIENCE 2002-present Professor of Philosophy, Southern Illinois University at Carbondale 1988-2001 Associate Professor of Philosophy, Southern Illinois University at Carbondale. 1982-1987 Assistant Professor of Philosophy, Southern Illinois University at Carbondale. 1981-1982 Assistant Professor of Philosophy, Denison University. 1978-1981 Assistant Professor of Philosophy and the History of Ideas, Brandeis University. 1979-1981 Assistant Professor, Harvard University, Extension. 1980 (Spring) Visiting Professor, The American College of Greece (Deree College), Athens, Greece. 1980 (Summer) Visiting Professor, The University of Maryland: European Division, Athens, Greece (The United States Air Force #7206 Air Base Group). 1977-1978 Assistant Professor of Philosophy, The University of Texas, Arlington. 1977 (Spring) Lecturer in Philosophy, Yale University. 1976 (Fall) Postdoctoral Research Fellow in Philosophy, The University of California at Berkeley. IV. TEACHING EXPERIENCE A. Teaching Interests and Specialties: History of Philosophy, History/Philosophy -
Plato As "Architectof Science"
Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries. -
What Did Shakespeare Know About Copernicanism?
DOI: 10.2478/v10319-012-0031-x WHAT DID SHAKESPEARE KNOW ABOUT COPERNICANISM? ALAN S. WEBER Weill Cornell Medical College–Qatar Abstract: This contribution examines Shakespeare’s knowledge of the cosmological theories of Nicolaus Copernicus (1473-1543) as well as recent claims that Shakespeare possessed specialized knowledge of technical astronomy. Keywords: Shakespeare, William; Copernicus, Nicolaus; renaissance astronomy 1. Introduction Although some of his near contemporaries lamented the coming of “The New Philosophy,” Shakespeare never made unambiguous or direct reference to the heliocentric theories of Nicolaus Copernicus (1473-1543) in his drama or poetry. Peter Usher, however, has recently argued in two books Hamlet’s Universe (2006) and Shakespeare and the Dawn of Modern Science (2010) that Hamlet is an elaborate allegory of Copernicanism, which in addition heralds pre-Galilean telescopic observations carried out by Thomas Digges. Although many of Usher’s arguments are excessively elaborate and speculative, he raises several interesting questions. Just why did Shakespeare, for example, choose the names of Rosenskrantz and Guildenstern for Hamlet’s petard-hoisted companions, two historical relatives of Tycho Brahe (the foremost astronomer during Shakespeare’s floruit)? What was Shakespeare’s relationship to the spread of Copernican cosmology in late Elizabethan England? Was he impacted by such Copernican-related currents of cosmological thought as the atomism of Thomas Harriot and Nicholas Hill, the Neoplatonism of Kepler, and -
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
Alexander Jones Calendrica I: New Callippic Dates
ALEXANDER JONES CALENDRICA I: NEW CALLIPPIC DATES aus: Zeitschrift für Papyrologie und Epigraphik 129 (2000) 141–158 © Dr. Rudolf Habelt GmbH, Bonn 141 CALENDRICA I: NEW CALLIPPIC DATES 1. Introduction. Callippic dates are familiar to students of Greek chronology, even though up to the present they have been known to occur only in a single source, Ptolemy’s Almagest (c. A.D. 150).1 Ptolemy’s Callippic dates appear in the context of discussions of astronomical observations ranging from the early third century B.C. to the third quarter of the second century B.C. In the present article I will present new attestations of Callippic dates which extend the period of the known use of this system by almost two centuries, into the middle of the first century A.D. I also take the opportunity to attempt a fresh examination of what we can deduce about the Callippic calendar and its history, a topic that has lately been the subject of quite divergent treatments. The distinguishing mark of a Callippic date is the specification of the year by a numbered “period according to Callippus” and a year number within that period. Each Callippic period comprised 76 years, and year 1 of Callippic Period 1 began about midsummer of 330 B.C. It is an obvious, and very reasonable, supposition that this convention for counting years was instituted by Callippus, the fourth- century astronomer whose revisions of Eudoxus’ planetary theory are mentioned by Aristotle in Metaphysics Λ 1073b32–38, and who also is prominent among the authorities cited in astronomical weather calendars (parapegmata).2 The point of the cycles is that 76 years contain exactly four so-called Metonic cycles of 19 years. -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
Chapter Two Democritus and the Different Limits to Divisibility
CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is. -
The Cosmos and Theological Reflection: the Priority of Self-Transcendence Paul Allen
Document generated on 09/30/2021 12:09 p.m. Théologiques The Cosmos and Theological Reflection: The Priority of Self-Transcendence Paul Allen Les cosmologies Article abstract Volume 9, Number 1, printemps 2001 In this article, I argue that the primary significance of cosmology for theology is through a notion of self-transcendence. It is an inherently theological notion URI: https://id.erudit.org/iderudit/005683ar arising within cosmology. It points to the realm of interiority claimed by DOI: https://doi.org/10.7202/005683ar contemporary theology. Employing the thought of Ernan McMullin in particular, I claim that self-transcendence emerges within cosmological See table of contents inquiry when it becomes philosophy, and when extrapolation is involved. A theological thrust to cosmology is confirmed when one understands the limits of cosmology as an empirical discipline amidst the existential questions that can be posed about the meaning of the universe, a development well illustrated Publisher(s) by the anthropic principle. Faculté de théologie de l'Université de Montréal ISSN 1188-7109 (print) 1492-1413 (digital) Explore this journal Cite this article Allen, P. (2001). The Cosmos and Theological Reflection: The Priority of Self-Transcendence. Théologiques, 9(1), 71–93. https://doi.org/10.7202/005683ar Tous droits réservés © Faculté de théologie de l’Université de Montréal, 2001 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. -
Claudius Ptolemy: Tetrabiblos
CLAUDIUS PTOLEMY: TETRABIBLOS OR THE QUADRIPARTITE MATHEMATICAL TREATISE FOUR BOOKS OF THE INFLUENCE OF THE STARS TRANSLATED FROM THE GREEK PARAPHRASE OF PROCLUS BY J. M. ASHMAND London, Davis and Dickson [1822] This version courtesy of http://www.classicalastrologer.com/ Revised 04-09-2008 Foreword It is fair to say that Claudius Ptolemy made the greatest single contribution to the preservation and transmission of astrological and astronomical knowledge of the Classical and Ancient world. No study of Traditional Astrology can ignore the importance and influence of this encyclopaedic work. It speaks not only of the stars, but of a distinct cosmology that prevailed until the 18th century. It is easy to jeer at someone who thinks the earth is the cosmic centre and refers to it as existing in a sublunary sphere. However, our current knowledge tells us that the universe is infinite. It seems to me that in an infinite universe, any given point must be the centre. Sometimes scientists are not so scientific. The fact is, it still applies to us for our purposes and even the most rational among us do not refer to sunrise as earth set. It practical terms, the Moon does have the most immediate effect on the Earth which is, after all, our point of reference. She turns the tides, influences vegetative growth and the menstrual cycle. What has become known as the Ptolemaic Universe, consisted of concentric circles emanating from Earth to the eighth sphere of the Fixed Stars, also known as the Empyrean. This cosmology is as spiritual as it is physical. -
94 Erkka Maula
ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture. -
Plotinus on the Soul's Omnipresence in Body
Plotinus on the Limitation of Act by Potency Gary M. Gurtler, S.J. Boston College The limitation of act by potency, central in the metaphysics of Thomas Aquinas, has its origins in Plotinus. He transforms Aristotle’s horizontal causality of change into a vertical causality of participation. Potency and infinity are not just unintelligible lack of limit, but productive power. Form determines matter but is limited by reception into matter. The experience of unity begins with sensible things, which always have parts, so what is really one is incorporeal, without division and separation. Unity is like the esse of Thomas, since it is the act that makes a thing what it is and has its fullness in God. 1. Introduction Over fifty years ago Norris Clarke, S.J., published “The Limitation of Act by Potency: Aristotelianism or Neoplatonism,” The New Scholasticism, 26 (1952) 167–194, which highlighted the role of Plotinus in formulating some of the fundamental distinctions operative in medieval philosophy. He singled out the doctrine of participation and the idea of infinity and showed how they went beyond the limits of classical Greek thought. At the same time, his work challenged some of the basic historical assumptions of Thomists about the relation of scholastic philosophy, especially St. Thomas’s, to Plato and Aristotle. I have appreciated more and more the unusual openness and self critical character of Fr. Clarke’s historical method, and am pleased to have the chance in this response to Sarah Borden’s paper to explore some of the issues raised by Fr. Clarke’s seminal article in light of my own work on Plotinus. -
Platonist Philosopher Hypatia of Alexandria in Amenabar’S Film Agorá
A STUDY OF THE RECEPTION OF THE LIFE AND DEATH OF THE NEO- PLATONIST PHILOSOPHER HYPATIA OF ALEXANDRIA IN AMENABAR’S FILM AGORÁ GILLIAN van der HEIJDEN Submitted in partial fulfilment of the requirement for the degree of MASTER OF ARTS In the Faculty of Humanities School of Religion, Philosophy and Classics at the UNIVERSITY OF KWAZULU-NATAL, DURBAN SUPERVISOR: PROFESSOR J.L. HILTON MARCH 2016 DECLARATION I, Gillian van der Heijden, declare that: The research reported in this dissertation, except where otherwise indicated, is my original research; This dissertation has not been submitted for any degree or examination at any other university; This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons; The dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) their words have been re-written but the general information attributed to them has been referenced; b) where their exact words have been used, their writing has been paragraphed and referenced; c) This dissertation/thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation/thesis and in the References sections. Signed: Gillian van der Heijden (Student Number 209541374) Professor J. L. Hilton ii ABSTRACT The film Agorá is better appreciated through a little knowledge of the rise of Christianity and its opposition to Paganism which professed ethical principles inherited from Greek mythology and acknowledged, seasonal rituals and wealth in land and livestock.