<<

SF2A, MONTPELLIER, 4-7 JUNE 2013

Exoplanetary Science with the E-ELT

Gaël Chauvin

- IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France

In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium Exoplanetary OutlineScience with the E-ELT

I- The E-ELT project

II- -forming Zones

III-

IV- Planetary Archeology

I- The E-ELT Project The Telescope

• 40-m class telescope: largest optical- infrared telescope in the world. (GMT = 25m; TMT = 30m)

• Segmented primary mirror.

• Adaptive assisted telescope.

• Wide field of view: 7 arcmin.

• Exquisite spatial resolution > 12mas@K-band

• Unprecedented sensitivity I- The E-ELT Project Timeline: current/future missions

2012 2014 2016 2018 2020 2022 2024 2026 2028

Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP… Space: Spitzer, Herschel, Kepler, CoRoT

- VLT & VLTI 2nd & 3rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY… - ALMA (ACA) - GAIA - Cheops - TESS - SKA - JWST - EChO/PLATO/FINESS?

- TMT - GMT - E-ELT I- The E-ELT Project Instrument Roadmap

Instruments AO Mode λ (µm) Resolution FoV / Sampling Add. Mode - First E-CAM SCAO, - IMG 0.8 – 2.4 BB, NB 53.0” / 3 mas 40µas – 2023 MCAO - MRS 3000 Coronography

E-IFU SCAO, - IFU 0.5 – 2.4 4000 0.5 1.0” / 4mas Coronography – 2023 LTAO 10 000 5.0 10.0” / 40mas 20 000

E-MIDIR SCAO, - IMG 3 – 13 BB, NB 18” / 12 mas Coronography – 2024/2028 LTAO - MRS 3 - 13 5000 Polarimetry - IFU 3 - 5 100 000 0.4” 1.5” / 4 mas

E-HIRES SCAO - HRS 0.37 – 0.71 200 000 0.82” Polarimetry - 2024/2028 0.84 – 2.50 120 000 0.027” 0.5”

E-MOS Slits 0.37 – 1.4 300- 2500 6.8” / 0.1” Multiplex ~ 400 - 2024/2028 IFUs 0.37 – 1.4 5000 – 30 000 420’ / 0.3” Multiplex ~100 MOAO IFUs 0.8 – 2.45 4000 – 10 000 2” / 40mas Multiplex ~10 Imaging? E-PCS XAO EPOL 0.6 – 0.9 2.0” / 2.3 mas Coronography - 2027/2030 IFS 0.95 – 1.65 125 – 20 000 0.8“ / 1.5 mas Polarimetry I- The E-ELT Project Instrument Roadmap • 1st Light Instruments

Instruments AO Mode λ (µm) Resolution FoV / Sampling Add. Mode - First Light E-CAM SCAO, - IMG 0.8 – 2.4 BB, NB 53.0” / 3 mas Astrometry 40µas – 2023 MCAO - MRS 3000 Coronography

E-IFU SCAO, - IFU 0.5 – 2.4 4000 0.5 1.0” / 4mas Coronography – 2023 LTAO 10 000 5.0 10.0” / 40mas 20 000

E-MIDIR SCAO, - IMG 3 – 13 BB, NB 18” / 12 mas Coronography – 2024/2028 LTAO - MRS 3 - 13 5000 Polarimetry - IFU 3 - 5 100 000 0.4” 1.5” / 4 mas

E-HIRES SCAO - HRS 0.37 – 0.71 200 000 0.82” Polarimetry - 2024/2028 0.84 – 2.50 120 000 0.027” 0.5”

E-MOS Slits 0.37 – 1.4 300- 2500 6.8” / 0.1” Multiplex ~ 400 - 2024/2028 IFUs 0.37 – 1.4 5000 – 30 000 420’ / 0.3” Multiplex ~100 MOAO IFUs 0.8 – 2.45 4000 – 10 000 2” / 40mas Multiplex ~10 Imaging? E-PCS XAO EPOL 0.6 – 0.9 2.0” / 2.3 mas Coronography - 2027/2030 IFS 0.95 – 1.65 125 – 20 000 0.8“ / 1.5 mas Polarimetry

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO I- The E-ELT Project Instrument Roadmap • 2nd Pool Instruments

Instruments AO Mode λ (µm) Resolution FoV / Sampling Add. Mode - First Light E-CAM SCAO, - IMG 0.8 – 2.4 BB, NB 53.0” / 3 mas Astrometry 40µas – 2023 MCAO - MRS 3000 Coronography

E-IFU SCAO, - IFU 0.5 – 2.4 4000 0.5 1.0” / 4mas Coronography – 2023 LTAO 10 000 5.0 10.0” / 40mas 20 000

E-MIDIR SCAO, - IMG 3 – 13 BB, NB 18” / 12 mas Coronography – 2024/2028 LTAO - MRS 3 - 13 5000 Polarimetry - IFU 3 - 5 100 000 0.4” 1.5” / 4 mas

E-HIRES SCAO - HRS 0.37 – 0.71 200 000 0.82” Polarimetry - 2024/2028 0.84 – 2.50 120 000 0.027” 0.5”

E-MOS Slits 0.37 – 1.4 300- 2500 6.8” / 0.1” Multiplex ~ 400 - 2024/2028 IFUs 0.37 – 1.4 5000 – 30 000 420’ / 0.3” Multiplex ~100 MOAO IFUs 0.8 – 2.45 4000 – 10 000 2” / 40mas Multiplex ~10 Imaging? E-PCS XAO EPOL 0.6 – 0.9 2.0” / 2.3 mas Coronography - 2027/2030 IFS 0.95 – 1.65 125 – 20 000 0.8“ / 1.5 mas Polarimetry

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO I- The E-ELT Project Instrument Roadmap • XAO Instrument

Instruments AO Mode λ (µm) Resolution FoV / Sampling Add. Mode - First Light E-CAM SCAO, - IMG 0.8 – 2.4 BB, NB 53.0” / 3 mas Astrometry 40µas – 2023 MCAO - MRS 3000 Coronography

E-IFU SCAO, - IFU 0.5 – 2.4 4000 0.5 1.0” / 4mas Coronography – 2023 LTAO 10 000 5.0 10.0” / 40mas 20 000

E-MIDIR SCAO, - IMG 3 – 13 BB, NB 18” / 12 mas Coronography – 2024/2028 LTAO - MRS 3 - 13 5000 Polarimetry - IFU 3 - 5 100 000 0.4” 1.5” / 4 mas

E-HIRES SCAO - HRS 0.37 – 0.71 200 000 0.82” Polarimetry - 2024/2028 0.84 – 2.50 120 000 0.027” 0.5”

E-MOS Slits 0.37 – 1.4 300- 2500 6.8” / 0.1” Multiplex ~ 400 - 2024/2028 IFUs 0.37 – 1.4 5000 – 30 000 420’ / 0.3” Multiplex ~100 MOAO IFUs 0.8 – 2.45 4000 – 10 000 2” / 40mas Multiplex ~10 Imaging? E-PCS XAO EPOL 0.6 – 0.9 2.0” / 2.3 mas Coronography - 2027/2030 IFS 0.95 – 1.65 125 – 20 000 0.8“ / 1.5 mas Polarimetry

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO I- The E-ELT Project Instrument Roadmap • Science Priority /

Instruments AO Mode λ (µm) Resolution FoV / Sampling Add. Mode - First Light E-CAM SCAO, - IMG 0.8 – 2.4 BB, NB 53.0” / 3 mas Astrometry 40µas – 2023 MCAO - MRS 3000 Coronography

E-IFU SCAO, - IFU 0.5 – 2.4 4000 0.5 1.0” / 4mas Coronography – 2023 LTAO 10 000 5.0 10.0” / 40mas 20 000

E-MIDIR SCAO, - IMG 3 – 13 BB, NB 18” / 12 mas Coronography – 2024/2028 LTAO - MRS 3 - 13 5000 Polarimetry - IFU 3 - 5 100 000 0.4” 1.5” / 4 mas

E-HIRES SCAO - HRS 0.37 – 0.71 200 000 0.82” Polarimetry - 2024/2028 0.84 – 2.50 120 000 0.027” 0.5”

E-MOS Slits 0.37 – 1.4 300- 2500 6.8” / 0.1” Multiplex ~ 400 - 2024/2028 IFUs 0.37 – 1.4 5000 – 30 000 420’ / 0.3” Multiplex ~100 MOAO IFUs 0.8 – 2.45 4000 – 10 000 2” / 40mas Multiplex ~10 Imaging? E-PCS XAO EPOL 0.6 – 0.9 2.0” / 2.3 mas Coronography - 2027/2030 IFS 0.95 – 1.65 125 – 20 000 0.8“ / 1.5 mas Polarimetry

Low Medium High II- Planet-Forming Zones

Artist’s View ESO-PR-0942 II- Planet-Forming Zones Key Scientific Questions

. Disk Structure & Dynamics (Gas & Dust) . Chemistry: Water & Organics in Planet-Forming Zones . Planetary Formation o Initial conditions . /Disk interactions

Fomalhaut ALMA/HST Bowler et al. 12 II- Planet-Forming Zones E-ELT’s View of Circumstellar Environment Co-rotation radius Magnetospheric radius snow line dust sublimation 1 Lsun @100 pc crystallization

Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr

E-ELT : E-MIDIR VLT/CRIRES 10 mas x 100pc = 1 AU E-IFU, E-HIRES ALMA II- Planet-Forming Zones E-ELT’s View of Circumstellar Environment Co-rotation radius Magnetospheric radius snow line dust sublimation 1 Lsun @100 pc crystallization

Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr

E-ELT : Spectro-astrometry E-MIDIR VLT/CRIRES 10 mas x 0.01 x 100pc = 0.01 AU E-IFU, E-HIRES ALMA II- Planet-Forming Zones Gas Dynamics Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07)

• E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of 100 000 (3 km/s)

32 AU

MIDIR

- E II- Planet-Forming Zones Gas Dynamics Water & Organics • Distribution and Dynamics • Disk cooling & formation • Organic/Prebiotic chemistry (CH4, C2H2, HCN…) • Isotopic Fractionation • Transfer to Terrestrial Planets

. Keck-NIRSPEC

. high HRS (R = 25 000) in L-band. . Detection of H20 and OH radicals MIR lines . Hot (800K) water from the inner AUs

DR Tau, AS 205 N; Salyk et al. 08

MIDIR

- E II- Planet-Forming Zones Observing Planetary Formation Asymmetries/Spirals in proto-planetary disks

• E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with JWST

MIDIR

- E E-MIDIR II • • • • Asymmetries/Spirals

- ELT Gap detection ata few Jupiter footprint at 20 AU (@100pc) from G E JWST at 0.1

- MIDIR MIDIR Planet - MIR very competitivewith

- 0.2” 0.2” (10 simulations –

20 20 AU)

of high mJy -

Forming

/as2 in proto - Observing contrast imaging at 10 µm.

- planetarydisks - star,

Planetary

Zones

Formation

E-MIDIR II • • • • Asymmetries/Spirals

- ELT Gap detection ata few Jupiter footprint at 20 AU (@100pc) from G E JWST at 0.1

- MIDIR MIDIR Planet - MIR very competitivewith

- 0.2” 0.2” (10 simulations –

20 20 AU)

of high mJy -

Forming

/as2 in proto - Observing contrast imaging at 10 µm.

- planetarydisks - star,

Planetary

Zones

Formation

E-MIDIR II • • • • Asymmetries/Spirals

- ELT Gap detection ata few Jupiter footprint at 20 AU (@100pc) from G E JWST at 0.1

- MIDIR MIDIR Planet - MIR very competitivewith

- 0.2” 0.2” (10 simulations –

20 20 AU)

of high mJy -

Forming

/as2 in proto - Observing contrast imaging at 10 µm.

- planetarydisks - star,

Planetary

Zones

Formation

III- Exoplanets

Artist’s View ESO-PR-1106 III- Exoplanets Key Scientific Questions

. Architecture of Exoplanetary Systems? . Formation & Evolution Processes . How does it depend on the Host properties? (Mass, Age, Composition…) . How frequent are the Telluric planets in the HZ? . Physics & Atmosphere of Exoplanets? (Telluric & Giant) . Bio-Signatures Discovery & Conditions favorable for Life? III- Exoplanets Exploration of Telluric Planets Expected planet population detected by with: o HARPS on the ESO 3.6-metre (precision 1 ms−1), Observed (Mayor et al. 11) Predicted (Mordasini et al. 09)

corrected

observed III- Exoplanets

Exploration of Telluric Planets

Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms−1; left), o ESPRESSO on the VLT(precision 10 cms−1; middle)

HIRES o and HIRES on the E-ELT(precision 1 cms−1; right).

- > HIRES, required to detect Earth-like planets in HZ of solar-type stars

E

III- Exoplanets

Twin Earth Discovery

• Simulations: 1.8 MEarth Exo-Earth in HZ (P=145 days) around a bright and low-activity K1V star.

• RV precision: 1 cm/s. Limitations: instr. noise, stellar oscillations, HIRES

- granulation and activity.

E • Dedicated observing strategy: 3 meas./night, every 3 nights over 8 months

• Periodogram: 3σ detection (red)

E-HIRES, E-MIDIR, E-PCS • • • •

- Physics Strongly Reflected Mechanisms? Imprints of Formation - -

Atmosphere’s Dynamics (H20, CH4,CO, (H20, CO2, NH3…) Chemical Composition GeometricAlbedos

. Evaporation, . Circulation, . Vertical Mixing, . Inversion,

of PlanetaryAtmospheres (Giant,

or , Transmitted III non

-

strongly irradiated

-

Exoplanets

or

Emitted Secondary

light of Thermal inversionThermal ThermalNo Inversion planets - Eclipse/Stronglyirradiated GPs; Knutson Planetary Atmospheres Exo Exoplanets

- Neptunes

to Super

Spitzer - Earths)

et al. etal. 09

E-IFU, E-MIDIR, E-PCS NaCo 11 January • • • • Physics Giantof Planets ESO et Rameau al. 13Hd95086; - > Access > Access Complementarity Orbital Atmospheric Observables: PR

( Lp - 1324(June 3 )

th , 2012

properties:a, e,i Dynamical Mass

III rd , 2013)

properties Luminosity 0.5” -

RV

, Exoplanets (down to Super Astr Bpic

, ,

Teff … ; Lagrange etal. 10

& G ravity Imaging PlanetaryImaging Systems - Earths)

HR8799;

Marois

et al. etal. 10

III- Exoplanets Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity • Atmospheric properties • Orbital properties: a, e, i,

PCS • Complementarity RV, Astr… - > Access Dynamical Mass

SPHERE MIDIR, E MIDIR,

- E-IFU/MIDIR GAIA

E-PCS Mesa et al. 11

IFU, E IFU, Kasper et al. 10

- Lattanzi & Sozzetti 10 E III- Exoplanets Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity Mordasini et al. 12 • Atmospheric properties • Orbital properties: a, e, i,

PCS • Complementarity RV, Astr… - > Access Dynamical Mass No Shock

Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase

MIDIR, E MIDIR, Accretion Shock

-

IFU, E IFU,

- E E-IFU, E-MIDIR, E-PCS • • Architecture • • Formation/Evolution Theories • • • • Physics Giantof Planets Planet Dynamical stability AccretionGas Phase L > Access Complementarity Orbital Atmospheric Observables: –

Mass RelationMass - disk interactionsdisk

properties:a, e,i Dynamical Mass III

properties Luminosity -

RV

, Exoplanets (down to Super Astr

, ,

Teff …

& G ravity Imaging PlanetaryImaging Systems - Earths)

Bpic

b; ESOb; PR0842

IV- Planetary Archeology

Artist’s View NASA/JPL CALTECH IV- Planetary Archeology White dwarfs polluted by planetary debris • Photospheric abundances: Fe, Si, Ca, C , O, Mg abundances • Physical/Chemical properties of WD circumstellar disks • Frequency of building Farihi et al. 2010 • Bulk chemistry of solid planetary bodies • Mass constraints for exoplanetary building blocks • Frequency of water-rich exo-asteroids • Constraints on habitable environments Want to know more…

The E-ELT Science Case: www.eso.org/sci/facilities/eelt/science/doc/eelt_sciencecase.pdf

The E-ELT Design Reference Mission: www.eso.org/sci/facilities/eelt/science/doc/ drm_report.pdf

The science users web pages: www.eso.org/sci/facilities/eelt

Shaping the E-ELT Conference (Fév 2013) www.eso.org/~sramsay/EELT2013-presentations/

The PNPS E-ELT Workshop (Fréjus, Fev 2013) www.pnps.univ-montp2.fr/spip.php?article50

E-ELT Exoplanetary Science Colloquium (2.2014)

Thank You!

E-IFU, E-HIRES & E-MIDIR 1/ . VLT/CRIRES,CO • • • • Star/Diskevolution

AS 205 N, 205AS lines Stellar Jet L Role of Magnetic ( Fields Inner Disk Geometryof Accretion Channels Disks

at

aunching

4.7µm (< 2 AU)2 4.7µm (< Pontopiddan & Disk Winds Properties(Warp, asymmetries…) emission

Zone,

et al. etal. 11

Config under under the microscope… ., Reconnection)

Star

E

– -

ELT:

disk

10 = 2 = 0.01 = mas x 0.01 x mas x0.01

Ro interactions

AU

100pc