Detection and Characterization of Circumstellar Material with a WFIRST Or EXO-C Coronagraphic Instrument: Simulations and Observational Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere
Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere To cite this version: Etienne Everaere. Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measure- ments on Forest Environment. Optics [physics.optics]. Ecole Polytechnique, 2015. English. tel- 01199522 HAL Id: tel-01199522 https://hal.archives-ouvertes.fr/tel-01199522 Submitted on 15 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale de l’École Polytechnie Thèse présentée pour obtenir le grade de docteur de l’École Polytechnique spécialité physique par Étienne Everaere Polarimetry in Bistatic Conguration for Ultra High Frequency Radar Measurements on Forest Environment Directeur de thèse : Antonello De Martino Soutenue le 6 mai 2015 devant le jury composé de : Rapporteurs : François Goudail - Professeur à l’Institut d’optique Graduate School Fabio Rocca - Professeur à L’École Polytechnique de Milan Examinateurs : Élise Colin-K÷niguer - Ingénieur de recherche à l’ONERA Carole Nahum - Responsable -
The Ubvri and Infrared Colour Indices of the Sun and Sun-Like Stars
The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Edited by G. A. Feiden THE UBVRI AND INFRARED COLOUR INDICES OF THE SUN AND SUN-LIKE STARS Mehmet TANRIVER1, Ferhat Fikri ÖZEREN1 1 Erciyes University, Astronomy and Space Sciences Department, 38039, Kayseri, Turkey Abstract The Sun is not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised for the Sun, meaning that it is dicult to derive its colours accurately for astronomical work from direct measurements in dierent passbands. The solar twins are the best choices because they are the stars that are ideally the same as the Sun in all parameters, and also, their colours are highly similar to those of the Sun. From the 60 articles on the Sun and Sun-like stars in the literature from 1964 until today, the solar colour indices in the optic and infrared regions have been estimated. 1 INTRODUCTION Table 1: The obtained average colour indices values of the The Sun is an average-low-mass star in the main sequence Sun with standart deviation (±σ)( Tanrıver (2012), Tanrıver of the Hertzsprung-Russell diagram. Moreover, the Sun is (2014a), Tanrıver (2014b) ). not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised B-V 0.6457 ± 0.0421 V-J 1.1413 ± 0.1063 for the Sun. Therefore, the colours and colour indices of the H-K 0.0572 ± 0.0351 U-B 0.1463 ± 0.0596 sun-like stars are used in order to determine the sun’s colour V-H 1.4613 ± 0.1183 J-K 0.3777 ± 0.0494 indices. -
Magnetism, Dynamo Action and the Solar-Stellar Connection
Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts. -
Habitability on Local, Galactic and Cosmological Scales
Habitability on local, Galactic and cosmological scales Luigi Secco1 • Marco Fecchio1 • Francesco Marzari1 Abstract The aim of this paper is to underline con- detectable studying our site. The Climatic Astronom- ditions necessary for the emergence and development ical Theory is introduced in sect.5 in order to define of life. They are placed at local planetary scale, at the circumsolar habitable zone (HZ) (sect.6) while the Galactic scale and within the cosmological evolution, translation from Solar to extra-Solar systems leads to a as pointed out by the Anthropic Cosmological Princi- generalized circumstellar habitable zone (CHZ) defined ple. We will consider the circumstellar habitable zone in sect.7 with some exemplifications to the Gliese-667C (CHZ) for planetary systems and a Galactic Habitable and the TRAPPIST-1 systems; some general remarks Zone (GHZ) including also a set of strong cosmologi- follow (sect.8). A first conclusion related to CHZ is cal constraints to allow life (cosmological habitability done moving toward GHZ and COSH (sect.9). The (COSH)). Some requirements are specific of a single conditions for the development of life are indeed only scale and its related physical phenomena, while others partially connected to the local scale in which a planet are due to the conspired effects occurring at more than is located. A strong interplay between different scales one scale. The scenario emerging from this analysis is exists and each single contribution to life from individ- that all the habitability conditions here detailed must ual scales is difficult to be isolated. However we will at least be met. -
Biosignatures Search in Habitable Planets
galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies. -
Observing Exoplanets
Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
The X-Ray Imaging Polarimetry Explorer
Call for a Medium-size mission opportunity in ESA‟s Science Programme for a launch in 2025 (M4) XXIIPPEE The X-ray Imaging Polarimetry Explorer Lead Proposer: Paolo Soffitta (INAF-IAPS, Italy) Contents 1. Executive summary ................................................................................................................................................ 3 2. Science case ........................................................................................................................................................... 5 3. Scientific requirements ........................................................................................................................................ 15 4. Proposed scientific instruments............................................................................................................................ 20 5. Proposed mission configuration and profile ........................................................................................................ 35 6. Management scheme ............................................................................................................................................ 45 7. Costing ................................................................................................................................................................. 50 8. Annex ................................................................................................................................................................... 52 Page 1 XIPE is proposed -
Looking for New Earth in the Coming Decade
Detection of Earth-like Planets with NWO With discoveries like methane on Mars (Mumma et al. 2009) and super-Earth planets orbiting nearby stars (Howard et al. 2009), the fields of exobiology and exoplanetary science are breaking new ground on almost a weekly basis. These two fields will one day merge, with the high goal of discovering Earth-like planets orbiting nearby stars and the subsequent search for signs of life on those planets. The Kepler mission will soon place clear bounds on the frequency of terrestrial-sized planets (Basri et al. 2008). Beyond that, the great challenge is to determine their true natures. Are terrestrial exoplanets anything like Earth, with life forms able to thrive even on the surface? What is the range of conditions under which Earth-like and other habitable worlds can arise? Every stellar system in the solar neighborhood is entirely unique, and it is almost certain that anything that can happen, will. With current and near-term technology, we can make great strides in finding and characterizing planets in the habitable zones of nearby stars. Given reasonable mission specifications for the New Worlds Observer, the layout of the stars in the solar neighborhood, and their variable characteristics (especially exozodiacal dust) a direct imaging mission can detect and characterize dozens of Earths. Not only does direct imaging achieve detection of planets in a single visit, but photometry, spectroscopy, polarimetry and time-variability in those signals place strong constraints on how those planets compare to our own, including plausible ranges in planet mass and atmospheric and internal structure. -
The Chemical Composition of Solar-Type Stars and Its Impact on the Presence of Planets
The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Munchen¨ 2013 The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Dissertation der Fakultat¨ fur¨ Physik der Ludwig-Maximilians-Universitat¨ Munchen¨ durchgefuhrt¨ am Max-Planck-Institut fur¨ Astrophysik vorgelegt von Patrick Baumann aus Munchen¨ Munchen,¨ den 31. Januar 2013 Erstgutacher: Prof. Dr. Achim Weiss Zweitgutachter: Prof. Dr. Joachim Puls Tag der mündlichen Prüfung: 8. April 2013 Zusammenfassung Wir untersuchen eine mogliche¨ Verbindung zwischen den relativen Elementhaufig-¨ keiten in Sternatmospharen¨ und der Anwesenheit von Planeten um den jeweili- gen Stern. Um zuverlassige¨ Ergebnisse zu erhalten, untersuchen wir ausschließlich sonnenahnliche¨ Sterne und fuhren¨ unsere spektroskopischen Analysen zur Bestim- mung der grundlegenden Parameter und der chemischen Zusammensetzung streng differenziell und relativ zu den solaren Werten durch. Insgesamt untersuchen wir 200 Sterne unter Zuhilfenahme von Spektren mit herausragender Qualitat,¨ die an den modernsten Teleskopen gewonnen wurden, die uns zur Verfugung¨ stehen. Mithilfe der Daten fur¨ 117 sonnenahnliche¨ Sterne untersuchen wir eine mogliche¨ Verbindung zwischen der Oberflachenh¨ aufigkeit¨ von Lithium in einem Stern, seinem Alter und der Wahrscheinlichkeit, dass sich ein oder mehrere Sterne in einer Um- laufbahn um das Objekt befinden. Fur¨ jeden Stern erhalten wir sehr exakte grundle- gende Parameter unter Benutzung einer sorgfaltig¨ zusammengestellten Liste von Fe i- und Fe ii-absorptionslinien, modernen Modellatmospharen¨ und Routinen zum Erstellen von Modellspektren. Die Massen und das Alter der Objekte werden mithilfe von Isochronen bestimmt, was zu sehr soliden relativen Werten fuhrt.¨ Bei jungen Sternen, fur¨ die die Isochronenmethode recht unzuverlssig¨ ist, vergleichen wir verschiedene alternative Methoden. -
Overview and Reassessment of Noise Budget of Starshade Exoplanet Imaging
Overview and reassessment of noise budget of starshade exoplanet imaging a,b, a a a Renyu Hu , * Doug Lisman, Stuart Shaklan , Stefan Martin , a a Phil Willems , and Kendra Short aJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States bCalifornia Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, California, United States Abstract. High-contrast imaging enabled by a starshade in formation flight with a space telescope can provide a near-term pathway to search for and characterize temperate and small planets of nearby stars. NASA’s Starshade Technology Development Activity to TRL5 (S5) is rapidly maturing the required technologies to the point at which starshades could be integrated into potential future missions. We reappraise the noise budget of starshade-enabled exoplanet imaging to incorporate the experimentally demonstrated optical performance of the starshade and its optical edge. Our analyses of stray light sources—including the leakage through micro- — meteoroid damage and the reflection of bright celestial bodies indicate that sunlight scattered by the optical edge (i.e., the solar glint) is by far the dominant stray light. With telescope and observation parameters that approximately correspond to Starshade Rendezvous with Roman and Habitable Exoplanet Observatory (HabEx), we find that the dominating noise source is exo- zodiacal light for characterizing a temperate and Earth-sized planet around Sun-like and earlier stars and the solar glint for later-type stars. Further, reducing the brightness of solar glint by a factor of 10 with a coating would prevent it from becoming the dominant noise for both Roman −10 and HabEx. -
Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the