Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere

Total Page:16

File Type:pdf, Size:1020Kb

Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere To cite this version: Etienne Everaere. Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measure- ments on Forest Environment. Optics [physics.optics]. Ecole Polytechnique, 2015. English. tel- 01199522 HAL Id: tel-01199522 https://hal.archives-ouvertes.fr/tel-01199522 Submitted on 15 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale de l’École Polytechnie Thèse présentée pour obtenir le grade de docteur de l’École Polytechnique spécialité physique par Étienne Everaere Polarimetry in Bistatic Conguration for Ultra High Frequency Radar Measurements on Forest Environment Directeur de thèse : Antonello De Martino Soutenue le 6 mai 2015 devant le jury composé de : Rapporteurs : François Goudail - Professeur à l’Institut d’optique Graduate School Fabio Rocca - Professeur à L’École Polytechnique de Milan Examinateurs : Élise Colin-K÷niguer - Ingénieur de recherche à l’ONERA Carole Nahum - Responsable environnement et géosciences à la DGA Xavier Orlik - Ingénieur de recherche à l’ONERA Razvigor Ossikovski - Directeur de thèse au LPICM Lætitia Thirion-Lefevre - Professeur adjoint au laboratoire SONDRA Lars Ulander - Professeur, Swedish Defence Research Agency FOI UMR 7647 DEMR - TSI ECOLE´ DOCTORALE DE L'ECOLE´ POLYTECHNIQUE Abstract Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment by Etienne´ Everaere This manuscript deals with airborne or space borne radar remote sensing in the forested environment. It is devoted to the explanation of the methods that enable us to an- ticipate and understand polarimetric acquisitions in bistatic configurations. The Ultra High Frequency band is retained because of its penetration capabilities in the forest environment. The bistatic configuration has been sensed to increase the radar per- formances for civil and military application. The full polarimetry is a great source of information in radar, and to be able to test and to validate the simulation for this con- figuration, scaled down measurements are investigated. The methods were developed during the last three years and include electromagnetic propagation study, polarimetry for scaled down forest, simulation investigation and the use of polarimetric decomposi- tions. Among conclusions, favorable polarizations, bistatic configuration retained and to improve contrast between forest types and new avenues for detection through the forest are proposed. Acknowledgements Cette th`esea ´et´efinanc´eepar la Direction G´en´eralede l'Armement (DGA) conjoin- tement avec l’Office National d'Etude´ et de Recherche A´erospatiale(ONERA) ainsi que le Laboratoire de Physique des Interfaces et Couches Minces (LPICM) et l'Ecole´ Polytechnique. Je remercie ces organismes et en particulier Monsieur Pierre Touboul, directeur scientifique de l'ONERA et Monsieur Jean-Marc Boutry directeur du DEMR, Madame Carole Nahum ma r´ef´erente DGA et Monsieur Pere Roca directeur du LPICM pour avoir financ´eces recherches et m'avoir fait confiance pour l'avanc´eede ces travaux. Je remercie l'´ecoledoctorale de Polytechnique pour la disponibilit´ede Madame Alexan- dra Belus, Madame Audrey Lemarechal, Monsieur Fabrice Baronnet et Monsieur Em- manuel Fullenwarth et la qualit´edes formations propos´ees. Je remercie les membres du jury pour le temps consacr´e`al'´evaluation de cette th`ese. Je suis tout particuli`erement reconnaissant envers Messieurs Fabio Rocca et Fran¸cois Goudail pour les discussions passionn´eeset tr`esapprofondies sur le manuscrit. Je remercie tr`essinc`erement Monsieur Xavier Orlik pour avoir pr´esid´ele jury de cette th`ese et qui a m^emeaid´epour l'installation de la salle pour le pot! Tous mes remerciements envers Monsieur Razvigor Ossikovski pour avoir repris la direction de ma th`ese,pour son soutien et son aide pr´ecieuse pour la r´edaction.My thanks to Mr. Lars Ulander for all his knowledge on the subject and for his kind advices. Thank you for your coming in Paris in spite of a long journey! Tout ce travail n'aurait pas ´et´epossible sans la personne d'Antonello de Martino qui a dirig´emes recherches et dont je salue la m´emoire.Je n'ai qu'aper¸cutout son talent, j'ai pu observer en lui une intelligence, une lucidit´eet une passion jamais vues. Je suis tr`esfier d'avoir eu un directeur de th`esede cette trempe et j'ai pu voir que cette force a ´et´etransmise `ases proches et ses coll`eguesdu LPICM. Le trio Antonello de Martino - Elise´ Colin-Koeniguer - Nicolas Trouv´ea ´et´epr´ecurseur pour le projet: la polarim´etrieoptique et la mesures des nanotubes de carbone utiles pour le radar! Avec en plus Laetitia Thirion-Lefevre qui a ´et´ema r´ef´erente pour la sim- ulation EM pour la for^et,avec le laboratoire SONDRA tr`essensible aux probl´ematiques radars pour l'environnement forestier, avec l'inversion de la biomasse et la d´etectionde cibles, j'avais toutes les cl´espour mener `abien ses recherches. Je remercie d'ailleurs Monsieur Marc Lesturgie et le laboratoire SONDRA pour les moyens mis `ama dispo- sition. La collaboration avec Elise´ Colin-Koeniguer mon encadrante `al'ONERA avait d´ej`a commenc´eelors de la th`esede Nicolas Trouv´esoutenue en 2011. Ces travaux avaient commenc´el'utilisation de la polarim´etrieoptique pour apporter de nouvelles infor- mations pour des mesures radar sur des sc`enesmises `al'´echelle. Ici nous avons pu poursuivre ces travaux et appliquer les premi`eresobservations au cas de la for^eten iii bistatique gr^ace`al'outil du LPICM, le polarim`etre r´esoluen angle, et qui a per- mis d'obtenir des r´esultatsquantitatifs pour anticiper la mesure radar bistatique pour l'´etudede la for^etet l'extraction de param`etresbiophysiques et ´egalement la d´etection de cibles dans la for^et. Un grand merci `atoutes les personnes avec lesquelles j'ai pu travailler au sein du LPICM : Jacqueline merci beaucoup pour avoir toujours ´et´e pr´esente pour les mesures, les calibrations fastidieuses et les adaptations du banc de mesure. Merci `aMartin pour les mesures spectrales, Bicher pour ses qualit´eshu- maines, son aide pour les mesures et la prise en main de \codiff ". Merci `aEnric pour ces nombreux conseils et ses nombreuses explications, Stan, Marc, Fr´ederic, Ivan. J'ai quand m^emepass´ele plus clair de mon temps `al'ONERA dans l'´equipe Traitement du SIgnal du D´epartement ´electroMagn´etismeet Radar. Toute ma gratitude envers Christian Rich´echef de l'unit´eTSI, toujours un mot doux pour les doctorants ;) Un grands merci `aPhilippe Fargette, Olivier Rabaste, Alexandre Lepoutre, Flora Weiss- berger, Jean-Baptiste Poisson, Luc Vignaud, Dominique Poullin, Marc Fl´echeux, Jean- Philippe Ovarlez, Christ`eleMorisseau, Gilles Vieillard aussi pour ses bons conseils et le piment dans les discussions politiques enflamm´ees,Jonathan Bosse, Eric´ Chaumette et Nicolas Trouv´epour les nombreux conseils et la transmission de ses connaissances, je te tire mon chapeau m^emesi ¸can'est pas facile de passer apr`esune barre mise si haute niveau science et r´ealisation(http://www.dailymotion.com/video/xmhf2s une-journe- e-au-radar tech). Toutes les personnes autour de moi au cours de ces 3 ans m'ont fait ´enorm´ement de bien. A` l'ONERA je salue Elisabeth´ Bertheau pour sa disponibilit´e et sa proximit´eet ´egalement Fran¸coiseRicci pour son d´evouement. Mon parcours `al'ONERA a commenc´epar un stage dans l'´equipe SFM. Je remercie Juan-Carlos, B´eatrice,Go, J´er^ome,Anil... Big up sp´ecial`aSylvie, maintenant en retraite, pour le parfum si particulier signe d'un m´enagetonitruant, rondement ex´ecut´e. Salut `a l'´equipe de choc pour l'organisation des JDD : Mathieu, Baptiste et Jessica. Salut `a Azza, Panagiotis, Damien, Oana, Rata, Abi, Corinna, Nicolas, Jean-Fran¸coiset tous les doctorants et merci aux membres d'Echo pour les visites organis´ees.Je salue mes voisins du DOTA: Benjamin, Armande, S´ebastien,Paul, Patrick. Gr^ace`atoi Elise´ j'ai aussi pu rencontrer d'autres personnes formidables au DTIM. Toute ma gratitude envers Fabrice Janez, salut Hicham, S´emy et toute l'´equipe. Je salue bien s^urtous les footeux du CSX et l'´equipe de foot de l'ONERA pour le tournois: Nicolas, Olivier, Julien, Romain, Christophe, Rafa¨el,Florian, Olivier et Abigael! Et puis je remercie aussi mon v´elorouill´epour m'avoir trimball´esur le plateau de Saclay jusqu'au bout >< Cette th`esea ´et´epour moi une tr`esbelle aventure scientifique. Les ´epreuves hu- maines rencontr´eesn'ont uniquement pu ^etresurmont´eespour continuer le travail que gr^ace`ames encadrantes Elise´ et Laetitia, `ama famille, mes proches, les coll`egesde l'´equipe TSI et du LPICM. Elise´ et Laetitia, vous avez ´et´etr`espr´esentes et tr`esproches pour que le travail aille de l'avant. Vous avez tout mon respect. iv Enfin merci `atous mes amis, `a Emilie,´ Justine, Art´emis,Corentin, Maman, Franco, Pascal, Louis et toute ma famille. Ce travail est d´edi´e`ala m´emoire de mon p`ere Jean-Michel Everaere et de mon directeur de th`eseAntonello De Martino. v Contents Abstract ii Acknowledgements iii Contents vi List of Figures xi List of Tables xix Abbreviations xxi I Tools to move from a monostatic polarimetric radar con- figuration to a bistatic configuration7 1 Bistatic Radar Image Processing9 1.1 Synthetic Aperture Radar Resolution..................
Recommended publications
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Observing Exoplanets
    Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L.
    [Show full text]
  • The X-Ray Imaging Polarimetry Explorer
    Call for a Medium-size mission opportunity in ESA‟s Science Programme for a launch in 2025 (M4) XXIIPPEE The X-ray Imaging Polarimetry Explorer Lead Proposer: Paolo Soffitta (INAF-IAPS, Italy) Contents 1. Executive summary ................................................................................................................................................ 3 2. Science case ........................................................................................................................................................... 5 3. Scientific requirements ........................................................................................................................................ 15 4. Proposed scientific instruments............................................................................................................................ 20 5. Proposed mission configuration and profile ........................................................................................................ 35 6. Management scheme ............................................................................................................................................ 45 7. Costing ................................................................................................................................................................. 50 8. Annex ................................................................................................................................................................... 52 Page 1 XIPE is proposed
    [Show full text]
  • Looking for New Earth in the Coming Decade
    Detection of Earth-like Planets with NWO With discoveries like methane on Mars (Mumma et al. 2009) and super-Earth planets orbiting nearby stars (Howard et al. 2009), the fields of exobiology and exoplanetary science are breaking new ground on almost a weekly basis. These two fields will one day merge, with the high goal of discovering Earth-like planets orbiting nearby stars and the subsequent search for signs of life on those planets. The Kepler mission will soon place clear bounds on the frequency of terrestrial-sized planets (Basri et al. 2008). Beyond that, the great challenge is to determine their true natures. Are terrestrial exoplanets anything like Earth, with life forms able to thrive even on the surface? What is the range of conditions under which Earth-like and other habitable worlds can arise? Every stellar system in the solar neighborhood is entirely unique, and it is almost certain that anything that can happen, will. With current and near-term technology, we can make great strides in finding and characterizing planets in the habitable zones of nearby stars. Given reasonable mission specifications for the New Worlds Observer, the layout of the stars in the solar neighborhood, and their variable characteristics (especially exozodiacal dust) a direct imaging mission can detect and characterize dozens of Earths. Not only does direct imaging achieve detection of planets in a single visit, but photometry, spectroscopy, polarimetry and time-variability in those signals place strong constraints on how those planets compare to our own, including plausible ranges in planet mass and atmospheric and internal structure.
    [Show full text]
  • Detection and Characterization of Circumstellar Material with a WFIRST Or EXO-C Coronagraphic Instrument: Simulations and Observational Methods
    Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods Glenn Schneider Dean C. Hines Glenn Schneider, Dean C. Hines, “Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods,” J. Astron. Telesc. Instrum. Syst. 2(1), 011022 (2016), doi: 10.1117/1.JATIS.2.1.011022. Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 01/14/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 2(1), 011022 (Jan–Mar 2016) Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods Glenn Schneidera,* and Dean C. Hinesb aThe University of Arizona, Steward Observatory and the Department of Astronomy, North Cherry Avenue, Tucson, Arizona 85712, United States bSpace Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, United States Abstract. The capabilities of a high (∼10−9 resel−1) contrast narrow-field coronagraphic instrument (CGI) on a space-based WFIRST-C or probe-class EXO-C/S mission are particularly and importantly germane to symbiotic studies of the systems of circumstellar material from which planets have emerged and interact with throughout their lifetimes. The small particle populations in “disks” of co-orbiting materials can trace the presence of planets through dynamical
    [Show full text]
  • Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
    EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the
    [Show full text]
  • Search, Characterization, and Properties of Brown Dwarfs
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Search, Characterization, And Properties Of Brown Dwarfs Ramarao Tata University of Central Florida Part of the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Tata, Ramarao, "Search, Characterization, And Properties Of Brown Dwarfs" (2009). Electronic Theses and Dissertations, 2004-2019. 3944. https://stars.library.ucf.edu/etd/3944 Search, Characterization, and Properties of Brown Dwarfs by Ramarao Tata M.S. University of Central Florida, 2005 B.Tech. Sri Venkateshwara University, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2009 Major Professor: Eduardo L. Mart´ın ABSTRACT Brown dwarfs (BD) were mere theoretical astrophysical objects for more than three decades (Kumar (1962)) till their first observational detection in 1995 (Rebolo et al. (1995), Nakajima et al. (1995)). These objects are intermediate in mass between stars and planets. Since their observational discovery these objects have been studied thoroughly and holisti- cally. Various methods for searching and characterizing these objects in different regions of the sky have been put forward and tested with great success.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • Simultaneous Optical and Near-Infrared Linear Spectropolarimetry of the Earthshine
    A&A 562, L5 (2014) Astronomy DOI: 10.1051/0004-6361/201323009 & c ESO 2014 Astrophysics Letter to the Editor Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine P. A. Miles-Páez1,2, E. Pallé1,2, and M. R. Zapatero Osorio3 1 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain e-mail: [pamp;epalle]@iac.es 2 Departamento de Astrofísica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Spain 3 Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain e-mail: [email protected] Received 7 November 2013 / Accepted 23 January 2014 ABSTRACT Aims. We aim to extend our current observational understanding of the integrated planet Earth spectropolarimetry from the optical to the near-infrared wavelengths. Major biomarkers like O2 and water vapor are strong flux absorbents in the Earth’s atmosphere, and some linear polarization of the reflected stellar light is expected to occur at these wavelengths. Methods. Simultaneous optical (0.4−0.9 μm) and near-infrared (0.9−2.3 μm) linear spectropolarimetric data of the earthshine were acquired by observing the nightside of the waxing Moon. The data have sufficient spectral resolution (2.51 nm in the optical, and 1.83 and 2.91 nm in the near-infrared) to resolve major molecular species present in the Earth’s atmosphere. Results. We find the highest values of linear polarization (≥10%) at the bluest wavelengths, which agrees with other studies. Linear polarization intensity steadily decreases toward red wavelengths reaching a nearly flat value beyond ∼0.8 μm.
    [Show full text]
  • Polarimetry of Exoplanets
    POLARIMETRY OF EXOPLANETS Max Millar -Blanchaer*,a, Suniti Sanghavia, Sloane Wiktorowiczb, Rebecca Jensen-Clemc Vanessa Baileya, Kimberly Bottd, James BreckinriDgee,f, Jeffrey Chilcoteg,h, Nicolas Cowani, Michael FitzgeralDj, Paul Kalasc, TheoDora KaraliDik, Tiffany Katariaa, John Krista, MereDith Kupinskil, Franck Marchisµ, Mark Marleyn, Stan Metchevo, Rebecca Oppenheimerp, Marshall Perrinq, Laurent Pueyoq, Tyler Robinsonr, Sara Seagers, William Sparksq, Robert Stencelt, Gautam Vasishta, Ji Wangf, Jason Wangc, Robert Westa, Schuyler Wolffu, Robert T. Zellema aJet Propulsion Laboratory, California Institute of Technology; bAerospace Corporation; cUniversity of California, Berkeley; dUniversity of Washington, Virtual Planetary Lab; eUniversity of Arizona; fCalifornia Institute of Technology, gStanforD University; hUniversity of Notre Dame; iMcGill University; jUniversity of California, Los Angeles; kUniversity of California, Santa Cruz; lCollege of Optical Sciences, University of Arizona; µSETI Institute; nNASA Ames Research Center; oUniversity of Western Ontario; pAmerican Museum of Natural History; qSpace Telescope Science Institute; rNorthern Arizona University; sMassachusetts Institute of Technology; tUniversity of Denver; uLeiden Observatory *[email protected] | 1 (626) 840 9193 © 2018 California Institute of Technology Executive Summary Polarimetry is an extremely useful tool for the characterization of exoplanets. Polarimetric observations with future telescopes have the potential to revolutionize our understanding of scattering processes in the atmospheres and on the surfaces of planets. In particular, time-series and spectropolarimetric measurements can distinguish between different cloud and surface types. Notably, polarimetry has the ability to constrain planetary albedos and may ultimately be able to reveal the presence of a liquid water surface. To maximize the gain from polarimetric measurements careful attention must be paid to the design and implementation of future instrument designs.
    [Show full text]
  • Virtual Planetary Laboratory
    The Virtual Planetary Laboratory Lead Institution: University of Washington, Seattle Team Overview Identifying a habitable or inhabited planet around another star is one of NASA’s greatest long-term goals. Major advances in exoplanet detection place humanity on the brink of finally answering astrobiology’s over-arching question: “Are we alone?”, but there are still many scientific steps required before we can identify a living world beyond our Solar System. The Virtual Planetary Laboratory focuses on under- standing how to recognize whether an extrasolar planet can or does support life. To do this, we use computational models to understand the many factors that affect planetary habitability, and use models, field and laboratory experiments to better understand how life might impact a planetary environment in detectable ways. These results are used to determine the potentially observable planetary character- istics and the telescope measurements required to discriminate between planets with and without life. Our five research objectives are to: • Characterize habitability and biosignatures for an Earth-like planet Principal Investigator: • Characterize the environment, habitability and biosignatures of the Earth Victoria Meadows through time • Develop interdisciplinary, multi-parameter characterization of exoplanet habitability • Determine the impact of life on terrestrial planet environments and the generation of biosignatures • Define required measurements and optimal retrieval methods for exoplanet characterization missions Background Image Credit: NASA/JPL-Caltech Team Website: https://depts.washington.edu/naivpl/content/welcome-virtual-planetary-laboratory NASA Astrobiology Institute 40 Annual Report 2017 2017 Executive Summary To enable NASA’s search for life beyond the Solar System the Virtual Planetary Laboratory Team uses computer models to explore terres- trial exoplanet habitability and biosignatures.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]