Polarimetry of Mars with SPEX, an Innovative Spectropolarimeter

Total Page:16

File Type:pdf, Size:1020Kb

Polarimetry of Mars with SPEX, an Innovative Spectropolarimeter Mars Atmosphere: Modeling and Observations (2008) 9078.pdf Polarimetry of Mars with SPEX, an Innovative Spectropolarimeter Daphne M. Stam1,2 ([email protected]), Erik Laan3, Frans Snik4, Theodora Karalidi4, Christoph Keller4, Rik ter Horst5, Ramon Navarro5, Christina Aas1, Johan de Vries3, Gijs Oomen6, and Ruud Hoogeveen2, 1 DEOS, Aerospace Engineering, Technical University, Delft, 2 SRON Netherlands Institute for Space Research, Utrecht, 3 TNO Science & Industry, Delft, 4 Sterrekundig Instituut Utrecht, Utrecht, 5 ASTRON Netherlands Foundation for Research in Astronomy, Dwingeloo, 6 Dutch Space, Leiden, all in the Netherlands We present SPEX, an innovative, compact, and ro- bust Spectropolarimeter for Planetary EXploration, that measures fluxes F and polarization P of sunlight re- flected by Mars from 400 to 800 nm with 2 nm (F ) to 20 nm (P ) spectral resolution, in 9 fixed viewing direc- tions. With SPEX, dust and ice cloud particles in the atmosphere and the surface can be studied. To illustrate the power of spectropolarimetry, we present sample sim- ulations of F and P of Mars for different dust scenarios. Introduction Polarimetry of sunlight that is reflected by a planet has proven to be a powerful tool to characterize the planetary atmosphere and surface. The main reason is that the state of polarization of scattered sunlight is more sensitive to the microphysical properties of particles (size, shape, and Figure 1: With 7 fixed viewing directions, SPEX will composition) than the flux [1, 2, 3]. An early example of measure flux and polarization phase functions of scenes the power of polarimetry was the derivation of the size along its ground track (the 2 limb viewers are not shown). and composition of Venus cloud particles from Earth- based polarimetry at two wavelengths [4]. Since then, polarimeters have flown on the Pioneer Venus, Galileo, SPEX instrument concept and Cassini missions. The POLDER polarimeter has Sunlight that has been scattered within the Mars atmo- flown on various Earth observing missions, and NASA’s sphere and/or that has been reflected by the surface can Glory mission with the Aerosol Polarimetry Sensor on- be described by a (column) vector F [see e.g. 1] board will be launched at the end of 2008. Mars, with its dust storms and ice clouds and dusty F = [F, Q, U, V ] , (1) surface, is an ideal polarimetry target. Indeed, HST- with F the total flux, Q and U the linearly polarized flux, observations show polarization variations correlating and V the circularly polarized flux. We’ll ignore V be- with clouds and dust [5]. However, these observations cause it is very small [see e.g. 8]. The degree of (linear) were done with Mars at opposition; and the degrees of polarization P of the reflected sunlight is defined as polarization are therefore very small. To truly enjoy the p advantages of polarimetry for Mars remote-sensing, a P = Q2 + U 2/F. (2) polarimeter should orbit the planet, because only then the scattering angles that hold most of the information The polarization direction χ is given by tan 2χ = U/Q are within reach. Two polarimeters have flown onboard (defined with respect to the local meridian plane) [see 1]. the Soviet spacecraft MARS-5 [6, 7] providing informa- In planetary (including Earth) remote-sensing, fluxes tion about particle shapes, sizes, and composition, even F , Q, and U of scattered sunlight are usually determined though they encountered a very clear Mars atmosphere. from flux measurements through 3 polarization filters We present SPEX, an innovative (patented), compact with their optical axes under different angles, or through (1 liter), and robust (no moving parts) spectropolarime- a single rotating filter [see e.g. 1]. The advantage of this ter in a design tailored for observing Mars from orbit, method is its simplicity. There are, however, also dis- together with sample simulations of the observable flux advantages: 1. the time lapse between the flux measure- and degree of polarization of reflected sunlight. ments can yield polarization errors of several percents, Mars Atmosphere: Modeling and Observations (2008) 9078.pdf 2 depending on the observed scene and on the change of Sample simulations the geometries during the integration time; 2. different Both F and P (and χ) of the reflected sunlight depend on filters have different transmission properties and may de- the composition of Mars’ atmosphere, the optical prop- grade differently during flight, which will lead to errors; erties of the dust and ice cloud particles, the reflective 3. when combining color filters with polarization filters, properties of the surface, and the illumination and view- P as is usually done, you have limited information on ’s ing angles. Flux F of course also depends on the incom- spectral behaviour; and 4. filter wheels can get stuck. ing solar flux F0, hence on the distance between Mars With SPEX, fluxes F , Q and U in a given view- and the sun, but in the following, we assume F0 = π, ing direction are measured simultaneously, from 400 to independent of the wavelength. Both P and χ of the re- 800 nm. As explained by Snik et al. [9], P and χ of the flected sunlight are independent of F0, since Q, U, and reflected sunlight are encoded in the flux spectrum of the 2 F are all proportional to F0. light. The encoding is a spectral modulation: the flux For our sample simulations of F and P of reflected spectrum is multiplied with a sinusoidal function. The sunlight, we describe the atmosphere as a stack of ho- modulation amplitude yields P , and the phase, χ. The mogeneous layers containing gas and dust particles. The amplitude and phase will depend on λ, like P (see the surface pressure is 6 mbars, and an average temperature next section) and χ. The advantage of the modulation is profile is chosen. We ignore the few, shallow absorp- that the full polarization information is obtained with just tion bands of CO2 in the SPEX wavelength region. The one flux spectrum measurement. surface reflects Lambertian (isotropically and depolariz- The spectral modulation is achieved with [see 9] an ing), and has a realistic, wavelength dependent albedo. achromatic quarter-wave retarder, followed by an ather- The dust particles are homogeneous palagonite spheres, mal multiple-order retarder and a polarizing beamsplit- sized according to the standard distribution of Hansen ter. The modulation frequency (i.e. the width of the mod- and Travis [1], with an effective variance of 1.5, and ef- ulations) depends on the optical properties of the com- fective radii of 0.5 or 1.0 µm. For each wavelength, the ponents, such as their refractive index and geometrical optical properties of the dust particles are calculated us- thickness. SPEX’ components have been chosen such ing Mie-theory. Although real dust particles probably [see 9] that the modulated flux is measured with a reso- have irregular shapes, spherical particles are fine to illus- lution of about 2 nm (by combining two simultaneously trate the effects of dust on the flux and polarization. We measured spectra, the flux itself can be retrieved with this choose two values for the dust optical thickness τD: 0.2 same resolution), The polarization can be retrieved with and 1.0 (at 630 nm). The dust is located in the lower part a resolution of about 20 nm. of the atmosphere (up till 1.4 mbars). SPEX has 9 apertures and measures modulated flux The simulations are performed using an adding- spectra simultaneously in 9 fixed viewing directions doubling radiative transfer code, which fully includes 1 along its flight track . Two apertures look at the limb multiple scattering and polarization [12, 13, 14]. (forward and backward) for studying ice clouds. The Figure 2 shows F and P for the 2 particle sizes and ◦ other viewing angles are approximately: 0 (nadir), the 2 dust optical thicknesses for the 7 viewing directions ◦ ◦ ◦ ±20 , ±40 , and ±55 (the + indicates the forward, of SPEX (the limb directions have been excluded). The and the − the backward direction). With these apertures, solar zenith angle is 60◦ and the sun is in the orbital plane SPEX obtains the flux and polarization phase functions of the satellite. The surface albedo strongly determines of the scenes it flies over (see Fig. 1). Each apertures ◦ F , especially when τD = 0.2 and for nadir and ±20 ◦ ◦ field-of-view is 1 × 7 (along × across track). Ground viewing angles. With increasing viewing angle and/or for pixel sizes will depend on the satellite’s orbit. τ = 1.0, F increases because of the increased scattering A provisional patent application for SPEX’ passive of light by the dust. Some sensitivity of F to the dust polarimetric method (the concept of which has been particle size is seen, especially for the largest viewing proven with a single aperture optical train in an optical angles, but the spectral shape of F changes little. laboratory) has been submitted. The project to build a P appears to be more sensitive to the particle size breadboard of SPEX with its 9 apertures has started in than F is. The variation in P with the viewing angle September 2008. The flight model will have a volume reflects the dust particles’ single scattering polarization of about 1 liter, a mass smaller than 5 kg, and a power phase function, which depends stronger on the particle budget smaller than 5 W. size than the flux phase function. The spectral features 1 2 with a slight off-set to compensate for Mars’ rotation except possibly across Fraunhofer lines in F0 [see e.g. 10, 11] Mars Atmosphere: Modeling and Observations (2008) 9078.pdf 3 of the surface albedo also show up in P , especially at the References longer wavelengths, where the albedo is highest: because [1] J.
Recommended publications
  • Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere
    Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measurements on Forest Environment Etienne Everaere To cite this version: Etienne Everaere. Polarimetry in Bistatic Configuration for Ultra High Frequency Radar Measure- ments on Forest Environment. Optics [physics.optics]. Ecole Polytechnique, 2015. English. tel- 01199522 HAL Id: tel-01199522 https://hal.archives-ouvertes.fr/tel-01199522 Submitted on 15 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale de l’École Polytechnie Thèse présentée pour obtenir le grade de docteur de l’École Polytechnique spécialité physique par Étienne Everaere Polarimetry in Bistatic Conguration for Ultra High Frequency Radar Measurements on Forest Environment Directeur de thèse : Antonello De Martino Soutenue le 6 mai 2015 devant le jury composé de : Rapporteurs : François Goudail - Professeur à l’Institut d’optique Graduate School Fabio Rocca - Professeur à L’École Polytechnique de Milan Examinateurs : Élise Colin-K÷niguer - Ingénieur de recherche à l’ONERA Carole Nahum - Responsable
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Observing Exoplanets
    Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L.
    [Show full text]
  • The X-Ray Imaging Polarimetry Explorer
    Call for a Medium-size mission opportunity in ESA‟s Science Programme for a launch in 2025 (M4) XXIIPPEE The X-ray Imaging Polarimetry Explorer Lead Proposer: Paolo Soffitta (INAF-IAPS, Italy) Contents 1. Executive summary ................................................................................................................................................ 3 2. Science case ........................................................................................................................................................... 5 3. Scientific requirements ........................................................................................................................................ 15 4. Proposed scientific instruments............................................................................................................................ 20 5. Proposed mission configuration and profile ........................................................................................................ 35 6. Management scheme ............................................................................................................................................ 45 7. Costing ................................................................................................................................................................. 50 8. Annex ................................................................................................................................................................... 52 Page 1 XIPE is proposed
    [Show full text]
  • Looking for New Earth in the Coming Decade
    Detection of Earth-like Planets with NWO With discoveries like methane on Mars (Mumma et al. 2009) and super-Earth planets orbiting nearby stars (Howard et al. 2009), the fields of exobiology and exoplanetary science are breaking new ground on almost a weekly basis. These two fields will one day merge, with the high goal of discovering Earth-like planets orbiting nearby stars and the subsequent search for signs of life on those planets. The Kepler mission will soon place clear bounds on the frequency of terrestrial-sized planets (Basri et al. 2008). Beyond that, the great challenge is to determine their true natures. Are terrestrial exoplanets anything like Earth, with life forms able to thrive even on the surface? What is the range of conditions under which Earth-like and other habitable worlds can arise? Every stellar system in the solar neighborhood is entirely unique, and it is almost certain that anything that can happen, will. With current and near-term technology, we can make great strides in finding and characterizing planets in the habitable zones of nearby stars. Given reasonable mission specifications for the New Worlds Observer, the layout of the stars in the solar neighborhood, and their variable characteristics (especially exozodiacal dust) a direct imaging mission can detect and characterize dozens of Earths. Not only does direct imaging achieve detection of planets in a single visit, but photometry, spectroscopy, polarimetry and time-variability in those signals place strong constraints on how those planets compare to our own, including plausible ranges in planet mass and atmospheric and internal structure.
    [Show full text]
  • Detection and Characterization of Circumstellar Material with a WFIRST Or EXO-C Coronagraphic Instrument: Simulations and Observational Methods
    Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods Glenn Schneider Dean C. Hines Glenn Schneider, Dean C. Hines, “Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods,” J. Astron. Telesc. Instrum. Syst. 2(1), 011022 (2016), doi: 10.1117/1.JATIS.2.1.011022. Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 01/14/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 2(1), 011022 (Jan–Mar 2016) Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods Glenn Schneidera,* and Dean C. Hinesb aThe University of Arizona, Steward Observatory and the Department of Astronomy, North Cherry Avenue, Tucson, Arizona 85712, United States bSpace Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, United States Abstract. The capabilities of a high (∼10−9 resel−1) contrast narrow-field coronagraphic instrument (CGI) on a space-based WFIRST-C or probe-class EXO-C/S mission are particularly and importantly germane to symbiotic studies of the systems of circumstellar material from which planets have emerged and interact with throughout their lifetimes. The small particle populations in “disks” of co-orbiting materials can trace the presence of planets through dynamical
    [Show full text]
  • Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
    EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the
    [Show full text]
  • Search, Characterization, and Properties of Brown Dwarfs
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Search, Characterization, And Properties Of Brown Dwarfs Ramarao Tata University of Central Florida Part of the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Tata, Ramarao, "Search, Characterization, And Properties Of Brown Dwarfs" (2009). Electronic Theses and Dissertations, 2004-2019. 3944. https://stars.library.ucf.edu/etd/3944 Search, Characterization, and Properties of Brown Dwarfs by Ramarao Tata M.S. University of Central Florida, 2005 B.Tech. Sri Venkateshwara University, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2009 Major Professor: Eduardo L. Mart´ın ABSTRACT Brown dwarfs (BD) were mere theoretical astrophysical objects for more than three decades (Kumar (1962)) till their first observational detection in 1995 (Rebolo et al. (1995), Nakajima et al. (1995)). These objects are intermediate in mass between stars and planets. Since their observational discovery these objects have been studied thoroughly and holisti- cally. Various methods for searching and characterizing these objects in different regions of the sky have been put forward and tested with great success.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • Simultaneous Optical and Near-Infrared Linear Spectropolarimetry of the Earthshine
    A&A 562, L5 (2014) Astronomy DOI: 10.1051/0004-6361/201323009 & c ESO 2014 Astrophysics Letter to the Editor Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine P. A. Miles-Páez1,2, E. Pallé1,2, and M. R. Zapatero Osorio3 1 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain e-mail: [pamp;epalle]@iac.es 2 Departamento de Astrofísica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Spain 3 Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain e-mail: [email protected] Received 7 November 2013 / Accepted 23 January 2014 ABSTRACT Aims. We aim to extend our current observational understanding of the integrated planet Earth spectropolarimetry from the optical to the near-infrared wavelengths. Major biomarkers like O2 and water vapor are strong flux absorbents in the Earth’s atmosphere, and some linear polarization of the reflected stellar light is expected to occur at these wavelengths. Methods. Simultaneous optical (0.4−0.9 μm) and near-infrared (0.9−2.3 μm) linear spectropolarimetric data of the earthshine were acquired by observing the nightside of the waxing Moon. The data have sufficient spectral resolution (2.51 nm in the optical, and 1.83 and 2.91 nm in the near-infrared) to resolve major molecular species present in the Earth’s atmosphere. Results. We find the highest values of linear polarization (≥10%) at the bluest wavelengths, which agrees with other studies. Linear polarization intensity steadily decreases toward red wavelengths reaching a nearly flat value beyond ∼0.8 μm.
    [Show full text]
  • Polarimetry of Exoplanets
    POLARIMETRY OF EXOPLANETS Max Millar -Blanchaer*,a, Suniti Sanghavia, Sloane Wiktorowiczb, Rebecca Jensen-Clemc Vanessa Baileya, Kimberly Bottd, James BreckinriDgee,f, Jeffrey Chilcoteg,h, Nicolas Cowani, Michael FitzgeralDj, Paul Kalasc, TheoDora KaraliDik, Tiffany Katariaa, John Krista, MereDith Kupinskil, Franck Marchisµ, Mark Marleyn, Stan Metchevo, Rebecca Oppenheimerp, Marshall Perrinq, Laurent Pueyoq, Tyler Robinsonr, Sara Seagers, William Sparksq, Robert Stencelt, Gautam Vasishta, Ji Wangf, Jason Wangc, Robert Westa, Schuyler Wolffu, Robert T. Zellema aJet Propulsion Laboratory, California Institute of Technology; bAerospace Corporation; cUniversity of California, Berkeley; dUniversity of Washington, Virtual Planetary Lab; eUniversity of Arizona; fCalifornia Institute of Technology, gStanforD University; hUniversity of Notre Dame; iMcGill University; jUniversity of California, Los Angeles; kUniversity of California, Santa Cruz; lCollege of Optical Sciences, University of Arizona; µSETI Institute; nNASA Ames Research Center; oUniversity of Western Ontario; pAmerican Museum of Natural History; qSpace Telescope Science Institute; rNorthern Arizona University; sMassachusetts Institute of Technology; tUniversity of Denver; uLeiden Observatory *[email protected] | 1 (626) 840 9193 © 2018 California Institute of Technology Executive Summary Polarimetry is an extremely useful tool for the characterization of exoplanets. Polarimetric observations with future telescopes have the potential to revolutionize our understanding of scattering processes in the atmospheres and on the surfaces of planets. In particular, time-series and spectropolarimetric measurements can distinguish between different cloud and surface types. Notably, polarimetry has the ability to constrain planetary albedos and may ultimately be able to reveal the presence of a liquid water surface. To maximize the gain from polarimetric measurements careful attention must be paid to the design and implementation of future instrument designs.
    [Show full text]
  • Virtual Planetary Laboratory
    The Virtual Planetary Laboratory Lead Institution: University of Washington, Seattle Team Overview Identifying a habitable or inhabited planet around another star is one of NASA’s greatest long-term goals. Major advances in exoplanet detection place humanity on the brink of finally answering astrobiology’s over-arching question: “Are we alone?”, but there are still many scientific steps required before we can identify a living world beyond our Solar System. The Virtual Planetary Laboratory focuses on under- standing how to recognize whether an extrasolar planet can or does support life. To do this, we use computational models to understand the many factors that affect planetary habitability, and use models, field and laboratory experiments to better understand how life might impact a planetary environment in detectable ways. These results are used to determine the potentially observable planetary character- istics and the telescope measurements required to discriminate between planets with and without life. Our five research objectives are to: • Characterize habitability and biosignatures for an Earth-like planet Principal Investigator: • Characterize the environment, habitability and biosignatures of the Earth Victoria Meadows through time • Develop interdisciplinary, multi-parameter characterization of exoplanet habitability • Determine the impact of life on terrestrial planet environments and the generation of biosignatures • Define required measurements and optimal retrieval methods for exoplanet characterization missions Background Image Credit: NASA/JPL-Caltech Team Website: https://depts.washington.edu/naivpl/content/welcome-virtual-planetary-laboratory NASA Astrobiology Institute 40 Annual Report 2017 2017 Executive Summary To enable NASA’s search for life beyond the Solar System the Virtual Planetary Laboratory Team uses computer models to explore terres- trial exoplanet habitability and biosignatures.
    [Show full text]