TAXON:Erigeron Bonariensis SCORE:17.0 RATING:High Risk

Total Page:16

File Type:pdf, Size:1020Kb

TAXON:Erigeron Bonariensis SCORE:17.0 RATING:High Risk TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Taxon: Erigeron bonariensis Family: Asteraceae Common Name(s): Argentine fleabane Synonym(s): Conyza bonariensis (L.) Cronquist bonar horseweed Erigeron crispus Pourr. flax-leaf fleabane hairy fleabane hairy horseweed large horseweed wavy-leaf fleabane Assessor: Chuck Chimera Status: Assessor Approved End Date: 4 Nov 2015 WRA Score: 17.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Annual Herb, Crop Weed, Self-Fertile, Wind-Dispersed, Seed Contaminant Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) y 304 Environmental weed 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n Creation Date: 4 Nov 2015 (Erigeron bonariensis) Page 1 of 19 TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Qsn # Question Answer Option Answer 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans 408 Creates a fire hazard in natural ecosystems 409 Is a shade tolerant plant at some stage of its life cycle Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 y conditions if not a volcanic island) 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 y 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n Geophyte (herbaceous with underground storage organs 504 y=1, n=0 n -- bulbs, corms, or tubers) Evidence of substantial reproductive failure in native 601 y=1, n=0 n habitat 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 y 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 4+ years = -1 1 Propagules likely to be dispersed unintentionally (plants 701 y=1, n=-1 y growing in heavily trafficked areas) 702 Propagules dispersed intentionally by people y=1, n=-1 n 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 y 704 Propagules adapted to wind dispersal y=1, n=-1 y 705 Propagules water dispersed y=1, n=-1 y 706 Propagules bird dispersed 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut 801 Prolific seed production (>1000/m2) y=1, n=-1 y Evidence that a persistent propagule bank is formed (>1 802 y=1, n=-1 y yr) 803 Well controlled by herbicides 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 n Effective natural enemies present locally (e.g. introduced 805 biocontrol agents) Creation Date: 4 Nov 2015 (Erigeron bonariensis) Page 2 of 19 TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Supporting Data: Qsn # Question Answer 101 Is the species highly domesticated? n Source(s) Notes Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of [Cosmopolitan weed. No evidence of domestication] "Perhaps native the flowering plants of Hawaii. Revised edition. University to South America but nearly cosmopolitan in distribution..." of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. 102 Has the species become naturalized where grown? Source(s) Notes WRA Specialist. 2015. Personal Communication NA 103 Does the species have weedy races? Source(s) Notes WRA Specialist. 2015. Personal Communication NA Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet High tropical" for "tropical or subtropical" Source(s) Notes "Native: USDA, ARS, National Genetic Resources Program. 2015. SOUTHERN AMERICA Germplasm Resources Information Network - (GRIN) Northern South America: French Guiana; Guyana; Suriname [Online Database]. National Germplasm Resources Brazil: Brazil Laboratory, Beltsville, Maryland. URL: http://www.ars- Western South America: Bolivia; Peru grin.gov/. [Accessed 2 Nov 2015] Southern South America: Argentina; Chile; Paraguay; Uruguay" 202 Quality of climate match data High Source(s) Notes USDA, ARS, National Genetic Resources Program. 2015. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www.ars- grin.gov/. [Accessed 2 Nov 2015] Creation Date: 4 Nov 2015 (Erigeron bonariensis) Page 3 of 19 TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Qsn # Question Answer 203 Broad climate suitability (environmental versatility) y Source(s) Notes "Although occurring mainly in warm temperate climates, it has wide adaptation to hotter climates and can be found in many sub-tropical regions, and even tropical zones especially at higher altitudes. In Europe, it is found mainly in the Mediterranean region, though has CABI, 2015. Conyza bonariensis. In: Invasive Species recently been recorded further north. There is little evidence for Compendium. Wallingford, UK: CAB International. preference regarding soil type. In Bhutan, it occurs at a wide range of www.cabi.org/isc altitudes, whereas C. floribunda is found mainly in lowlands, below 2000 m and C. canadensis tends to be restricted to higher altitudes, over 2000 m (Parker, 1992). C. bonariensis has been recorded at altitudes up to 3900 m in Bolivia (Missouri Botanical Garden, 2004)." Native or naturalized in regions with tropical or 204 y subtropical climates Source(s) Notes Creation Date: 4 Nov 2015 (Erigeron bonariensis) Page 4 of 19 TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Qsn # Question Answer "Naturalized: AFRICA Macaronesia: Cape Verde; Portugal - Azores, Madeira Islands; Spain - Canary Islands Northern Africa: Algeria; Egypt; Libya; Morocco; Tunisia Northeast Tropical Africa: Eritrea; Ethiopia East Tropical Africa: Kenya; Tanzania; Uganda West-Central Tropical Africa: Rwanda; Sao Tome and Principe West Tropical Africa: Ghana Southern Africa: Botswana; Lesotho; Namibia; South Africa; Swaziland ASIA-TEMPERATE Arabian Peninsula: Oman; Yemen Western Asia: Afghanistan; Cyprus; Egypt - Sinai; Iran; Iraq; Israel; Jordan; Lebanon; Syria; Turkey Caucasus: Azerbaijan; Georgia China: China Eastern Asia: Japan - Honshu; Korea, South; Taiwan ASIA-TROPICAL Indian Subcontinent: Bhutan; India; Nepal; Pakistan; Sri Lanka Malesia: Malaysia AUSTRALASIA Australia: Australia New Zealand: New Zealand EUROPE USDA, ARS, National Genetic Resources Program. 2015. Northern Europe: United Kingdom Germplasm Resources Information Network - (GRIN) Middle Europe: Belgium; Germany; Netherlands; Switzerland [Online Database]. National Germplasm Resources Southeastern Europe: Albania; Bulgaria; Croatia; Greece [incl. Laboratory, Beltsville, Maryland. URL: http://www.ars- Crete]; Italy [incl. Sardinia, Sicily]; Macedonia; Montenegro; Slovenia grin.gov/. [Accessed 2 Nov 2015] Southwestern Europe: France [incl. Corsica]; Portugal; Spain [incl. Baleares] NORTHERN AMERICA Northwestern U.S.A.: United States - Oregon Southeastern U.S.A.: United States - Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Virginia South-Central U.S.A.: United States - New Mexico, Texas Southwestern U.S.A.: United States - Arizona, California, Utah Mexico PACIFIC North-Central Pacific: U.S. Outlying Islands - Midway Islands; United States - Hawaii Northwestern Pacific: Marshall Islands; Northern Mariana Islands; U.S. Outlying Islands - Wake Island South-Central Pacific: French Polynesia; Pitcairn Southwestern Pacific: New Caledonia; Niue SOUTHERN AMERICA Caribbean: Antigua and Barbuda; Bahamas; Barbados; Cuba; Dominica; Grenada; Guadeloupe; Hispaniola; Jamaica; Martinique; Montserrat; Netherlands Antilles; Puerto Rico; St. Kitts and Nevis; St. Lucia; St. Vincent and Grenadines; Virgin Islands (British); Virgin Islands (U.S.) Mesoamerica: Belize; Costa Rica; Guatemala; Honduras; Nicaragua; Panama Northern South America: Venezuela Western South America: Ecuador - Galapagos Islands" Creation Date: 4 Nov 2015 (Erigeron bonariensis) Page 5 of 19 TAXON: Erigeron bonariensis SCORE: 17.0 RATING: High Risk Qsn # Question Answer Does the species have a history of repeated 205 y introductions outside its natural range? Source(s) Notes Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of "Perhaps native to South America but nearly cosmopolitan in the flowering plants of Hawaii. Revised edition. University distribution" of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. 301 Naturalized beyond native range y Source(s) Notes "C. bonariensis was first described from Argentina and is probably native to the more temperate parts
Recommended publications
  • The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
    Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area.
    [Show full text]
  • Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova
    ETHNOPHARMACOLOGY – Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova MEDICINAL AND AROMATIC PLANTS OF AZERBAIJAN Naiba Mehtiyeva and Sevil Zeynalova Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar sh. 40, AZ1073, Baku, Azerbaijan Keywords: Azerbaijan, medicinal plants, aromatic plants, treatments, history, biological active substances. Contents 1. Introduction 2. Historical perspective of the traditional medicine 3. Medicinal and aromatic plants of Azerbaijan 4. Preparation and applying of decoctions and infusions from medicinal plants 5. Conclusion Acknowledgement Bibliography Biographical Sketches Summary Data on the biological active substances and therapeutical properties of more than 131 medicinal and aromatic (spicy-aromatic) plants widely distributed and frequently used in Azerbaijan are given in this chapter. The majority of the described species contain flavonoids (115 sp.), vitamin C (84 sp.), fatty oils (78 sp.), tannins (77 sp.), alkaloids (74 sp.) and essential oils (73 sp.). A prevalence of these biological active substances defines the broad spectrum of therapeutic actions of the described plants. So, significant number of species possess antibacterial (69 sp.), diuretic (60 sp.), wound healing (51 sp.), styptic (46 sp.) and expectorant (45 sp.) peculiarities. The majority of the species are used in curing of gastrointestinal (89 sp.), bronchopulmonary (61 sp.), dermatovenerologic (61 sp.), nephritic (55 sp.) and infectious (52 sp.) diseases, also for treatment of festering
    [Show full text]
  • The Ecology of Fleabane (Conyza Spp.)
    The ecology of fleabane (Conyza spp.) Todd Douglas Green B.LandMgmt(Ecological Agriculture) University of Sydney B.Sc (Hons) University of Newcastle A thesis submitted for the degree of Doctor of Philosophy of the University of New England School of Environmental and Rural Science Faculty of Arts and Sciences University of New England October 2010 DECLARATION I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification. I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis. Todd Douglas Green i ACKNOWLEDGEMENTS I would like to acknowledge the Cotton Research Development Corporation (CRDC) and the Cotton Catchment Communities Co-operative Research Centre (Cotton CRC) for funding this research (Project #1.01.54) and thank these entities for offering me an opportunity to undertake a PhD. My supervisory team of Professor Brian Sindel, Dr Jeff Werth and Mr Graham Charles all played a role in getting my research completed and thesis submitted. I thank them all for supporting my journey over the past three years. I am grateful for the detailed reviews and editing by Professor Sindel, his encouragement, knowledge and understanding. I would like to thank Dr Jeff Werth for his promptness in feedback, knowledge and his encouragement. To Mr Graham Charles, I am fortunate to have access to his practical knowledge and thank him for his thorough reviews and encouragement. I would also like to thank general staff members of the University of New England who provided assistance to me personally and for practical elements of my research, namely, Dan Alter, Greg (‘Tractor’) Chamberlain, Mick Faint, George Henderson, Dave Edmonds and Elizabeth Davies.
    [Show full text]
  • Biology and Management of Horseweed and Hairy Fleabane in California
    University of California Division of Agriculture and Natural Resources http://anrcatalog.ucdavis.edu Publication 8314 / September 2008 Biology and Management of Horseweed and Hairy Fleabane in California ANIL SHRESTHA, Department of Plant Science, California State University, Fresno; KURT HEMBREE, University of California Cooperative Extension Farm Advisor, Fresno County; and STEVEN WRIGHT, University of California Cooperative Extension Farm Advisor, Tulare and Kings Counties In recent years, increasing populations of horseweed, or mare’s tail, (Conyza canadensis) and hairy, or flax-leaved, fleabane (Conyza bonariensis) have been observed in vineyards, orchards, canal banks, and roadsides in California, especially in the Central Valley. Numerous growers, pest control consultants, and managers have complained that the recommended rates of some postemergent herbicides, such as glyphosate, are no longer effective on these weeds. Since glyphosate-resistant biotypes of these species have now been confirmed (Shrestha et al., 2007), alternative integrated techniques need to be employed to effectively manage resistant and nonresistant biotype populations and to prevent the further development of herbicide resistance. A basic understanding of the biology of these weeds is essential to develop an integrated management approach. Biology of Horseweed and Hairy Fleabane Horseweed and hairy fleabane are summer annuals belonging to the Asteraceae (sunflower) family. The temperature and light requirements for germination, soil type preference, and depth of soil emergence of these two species are fairly similar. The optimal temperature for germination of both species ranges from 65ºF to 75ºF, and they can germinate under moderate (0.4 MPa) water stress. However, hairy fleabane can germinate at lower temperatures than horseweed (Karlsson and Milberg 2007).
    [Show full text]
  • Notes on the Occurrence of Erigeron Sumatrensis (Asteraceae) in Georgia
    Nesom, G.L. 2018. Notes on the occurrence of Erigeron sumatrensis (Asteraceae) in Georgia. Phytoneuron 2018-66: 1–5. Published 1 October 2018. ISSN 2153 733X NOTES ON THE OCCURRENCE OF ERIGERON SUMATRENSIS (ASTERACEAE) IN GEORGIA GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 [email protected] ABSTRACT A survey for Erigeron sumatrensis in central Georgia indicates that it is densely distributed on the the coastal plain there, suggesting that its occurrence may be similar from South Carolina to Louisiana. Vouchers and a distribution map for the Georgia records are provided. A recent study (Nesom 2018) documented the occurrence of Erigeron sumatrensis Retz. across the southeastern USA (Fig. 1). Current herbarium collections suggest that it is common in coastal counties but sporadic in more inland areas. The present report indicates that the species probably is more densely distributed through the coastal plain from South Carolina to Louisiana. On 9-10 September, 2018, I surveyed a broad loop in central Georgia and added 14 county records to the distribution of Erigeron sumatrensis . Figure 2 shows the more geographically saturated distribution the species has attained there. The tall columnar habit (characteristically 4-6 feet tall) of Erigeron sumatrensis makes it conspicuous (Figs. 3-5). In central Georgia I found it along roadsides and fencerows and at edges of cultivated and fallow fields. It is local in occurrence, usually as only 1 or a few plants (but sometimes up to 10-15 in a cluster), often growing with more abundant and continuously distributed E. canadensis . Erigeron sumatrensis in September is at the end of its growing season and mostly in fruit, while many plants of E.
    [Show full text]
  • New Records of Agromyzidae (Diptera) from Western Turkey
    INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 49 New records of Agromyzidae (Diptera) from Western Turkey Hasan Sungur Civelek Mugla University, Ortaca Vocational School 48600 Ortaca, Mugla, Turkey [email protected] Abstract. Specimens were collected once a week from Mugla province, western Turkey, in 2000 and 2001 from cultured and non-cultured plants. During this study Ophiomyia pulicaria (Meigen, 1830); Aulagromyza buhri (de Meijere, 1938); Chromatomyia scolopendri (Robineau-Desvoidy, 1851); Liriomyza flaveola (Fallen 1823); Liriomyza sativae Blanchard, 1938; Phytomyza angelicae Kaltenbach, 1872; Phytomyza conyzae Hering, 1920; Phytomyza rufipes Meigen, 1830; Phytomyza thysselinivora Hering, 1924 are newly recorded for the Turkish leafminer fauna. Morphological descriptions, hosts and their general distributions are given. Key Words: Agromyzidae, leafminer, new records, Turkey. Introduction four subareas for the convenience of the collection of specimens. The specimens were collected from With more than 2,500 described species belong­ both cultured and non-cultured plants once a week. ing to 26 genera in the world, Agromyzidae (leaf­ The adults of leafminers were obtained by sweep­ mining flies) is one of the largest fly families. From ing or by rearing specimens from infested leaves in this family, 776 species were identified in Europe. the laboratory. Due to the fact that the male geni­ Adults can be minute, with wing length of little talia are important characters for identification of more than 1 mm. The maximum size known is 6.5 leafminers, they were removed from the fly, chem­ mm. The majority of species are in the range of 2 to icallytreated, and slide preparations were made for 3 mm.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Erigeron Speciosus (Lindl.) DC
    ASPEN FLEABANE Erigeron speciosus (Lindl.) DC. Asteraceae – Aster family Corey L. Gucker & Nancy L. Shaw | 2018 ORGANIZATION NOMENCLATURE Erigeron speciosus (Lind.) DC., hereafter Names, subtaxa, chromosome number(s), hybridization. referred to as aspen fleabane, belongs to the Astereae tribe of the Asteraceae or aster family (Nesom 2006). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. ERSP4 (USDA NRCS 2018). Synonyms. Erigeron conspicuus Rydberg; E. macranthus Nuttall; E. speciosus var. conspicuus (Rydberg) Breitung; E. speciosus Life form, morphology, distinguishing characteristics, reproduction. var. macranthus (Nuttall) Cronquist; E. subtrinervis Rydberg ex Porter & Britton subsp. conspicuus (Rydberg) Cronquist; Growth rate, successional status, disturbance ecology, importance to E. subtrinervis var. conspicuus (Rydberg) animals/people. Cronquist, Stenactis speciosa Lindley (Nesom 2006). Current or potential uses in restoration. Common Names. Aspen fleabane, Oregon fleabane, Oregon wild-daisy, showy daisy, showy fleabane (USDA FS 1937; Nesom 2006; AOSA 2016; USDA NRCS 2018). Seed sourcing, wildland seed collection, seed cleaning, storage, testing and marketing standards. Subtaxa. No varieties or subspecies are currently recognized by the Flora of North America (Nesom 2006). Recommendations/guidelines for producing seed. Chromosome Number. Chromosome numbers are 2n = 18, 36 (Jones and Young 1983; Welsh et al. 1987). Recommendations/guidelines for producing planting stock. Hybridization. Distributions of aspen fleabane and threenerve fleabane (E. subtrinervis) have considerable overlap, and although they are Recommendations/guidelines, wildland restoration successes/ considered at least partially reproductively failures. isolated, intermediate forms are common (Nesom 2006). Primary funding sources, chapter reviewers. DISTRIBUTION Bibliography. Aspen fleabane is widely distributed throughout western North America. In Canada, it occurs in British Columbia and Alberta.
    [Show full text]
  • Weed Name Bayer Code Family Genus Species Acacia ACASS Leguminosae Acacia Sp
    Weed Name Bayer Code Family Genus Species acacia ACASS Leguminosae Acacia sp. acacia, ACARI Leguminosae Acacia rigidula Benth. blackbrush acacia, catclaw ACAGR Leguminosae Acacia greggii A. Gray acacia, twisted ACATT Leguminosae Acacia tortuosa (L.) Willd. adonis, ADOAN Ranunculaceae Adonis annua L. emend. pheasanteye Huds. adonis, spring ADOVE Ranunculaceae Adonis vernalis L. ageratum, AGECO Compositae Ageratum conyzoides L. tropic agrimony, AGIST Rosaceae Agrimonia striata Michx. roadside air potato DIUBU Dioscoreaceae Dioscorea bulbifera L. alder ALNSS Betulaceae Alnus sp. alder, ALUGL Betulaceae Alnus glutinosa (L.) European Gaertn. alder, red ALURB Betulaceae Alnus rubra Bong. alder, speckled ALURG Betulaceae Alnus rugosa (Du Roi) Spreng. alexandergrass BRAPL Gramineae Brachiaria plantaginea (Link) A.S.Hitchc. alexandergrass, BRASU Gramineae Brachiaria subquadripara smallflowered (Trin.) A.S.Hitchc. alfalfa MEDSA Leguminosae Medicago sativa L. (volunteer) alfombrilla DRYAR Caryophyllaceae Drymaria arenarioides H.B.K. alkaliweed CSVTR Convolvulaceae Cressa truxillensis H.B.K. alligatorweed ALRPH Amaranthaceae Alternanthera philoxeroides (Mart.) Griseb. alyssum AYSSS Cruciferae Alyssum sp. alyssum, dwarf AYSDE Cruciferae Alyssum desertorum Stapf alyssum, field AYSMI Cruciferae Alyssum minus (L.) Rothm. alyssum, hoary BEFIN Cruciferae Berteroa incana (L.) DC. alyssum, sweet LOUMA Cruciferae Lobularia maritima (L.) Desv. alyssum, AYSAL Cruciferae Alyssum alyssoides (L.) L. yellow amaranth AMASS Amaranthaceae Amaranthus sp. amaranth, AMAFA Amaranthaceae Amaranthus palmeri S.Wats. Palmer amaranth, AMATO Amaranthaceae Amaranthus bigelovii Uline & Torrey Bray amaranth, AMAAU Amaranthaceae Amaranthus australis (Gray) giant J.D.Sauer amaranth, livid AMALI Amaranthaceae Amaranthus lividus L. amaranth, AMAPO Amaranthaceae Amaranthus powellii S.Wats. Powell amaranth, AMAAR Amaranthaceae Amaranthus arenicola sandhills I.M.Johnst. amaranth, AMAVI Amaranthaceae Amaranthus viridus L. slender amaranth, AMADU Amaranthaceae Amaranthus dubius Mart.
    [Show full text]
  • Chemical Constituents from Erigeron Bonariensis L. and Their Chemotaxonomic Importance
    SHORT REPORT Rec. Nat. Prod . 6:4 (2012) 376-380 Chemical Constituents from Erigeron bonariensis L. and their Chemotaxonomic Importance Aqib Zahoor 1,4 , Hidayat Hussain *1,2 , Afsar Khan 3, Ishtiaq Ahmed 1, Viqar Uddin Ahmad 4 and Karsten Krohn 1 1Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2Department of Biological Sciences and Chemistry, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman 3Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan. 4H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. (Received September 11, 2011; Revised May 9, 2012 Accepted June 15, 2012) Abstract: The study of the chemical constituents of the whole plant of Erigeron bonariensis (L.) has resulted in the isolation and characterization of a new and nine known compounds. The known compounds were identified as stigmasterol (1), freideline ( 2), 1,3-dihydroxy-3R,5 R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester ( 3), 1R,3 R-dihydroxy- 4S,5 R-dicaffeoyloxycyclohexane carboxylic acid methyl ester ( 4), quercitrin ( 5), caffeic acid ( 6), 3-(3,4- dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester (8), benzyl O-β-D-glucopyranoside (9), and 2-phenylethyl-β-D-glucopyranoside ( 10 ). The aromatic glycoside, erigoside G ( 7) is reported as new natural compound. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The chemotaxonomic studies of isolated compounds have been discussed. Keywords: Erigeron bonariensis ; natural products; chemotaxonomic studies. 1.Plant Source Erigeron bonariensis (L.) is locally called “gulava” or “mrich booti” and is traditionally used in urine problems.
    [Show full text]
  • Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities Against Aedes A
    molecules Article Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Tran Minh Hoi 1, Le Thi Huong 2 , Hoang Van Chinh 3, Dang Viet Hau 4, Prabodh Satyal 5, Thieu Anh Tai 6, Do Ngoc Dai 7,8 , Nguyen Huy Hung 6,9,* , Vu Thi Hien 10 and William N Setzer 5,11,* 1 Department of Plant Resources, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; [email protected] 2 School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Vietnam; [email protected] 3 Faculty of Natural Sciences, Hong Duc University, 365 Quang Trung, Thanh Hoa 440000, Vietnam; [email protected] 4 Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; [email protected] 5 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA; [email protected] 6 Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; [email protected] 7 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, 100000 Vietnam; [email protected] 8 Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City 460000, Vietnam 9 Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
    [Show full text]