Noncommutative Localization in Algebra and Topology

Total Page:16

File Type:pdf, Size:1020Kb

Noncommutative Localization in Algebra and Topology Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol. 270, 261{280 (2003) http://arXiv.org/abs/math.KT/0209311 4. Invariants of Boundary Link Cobordism II. The Blanch¯eld-Duval Form in this volume, pages 142{218, http://arXiv.org/abs/math.AT/0404229 5. Universal localization of triangular matrix rings to appear in the Proceedings of the American Mathematical Society http://arXiv.org/abs/math.RA/0407497 6. (with A.R.) Blanch¯eld and Seifert algebra in high-dimensional bound- ary links I. Algebraic K-theory, http://arXiv.org/abs/math.AT/0508405 I was Des's Ph.D. supervisor at the University of Edinburgh. I prefer the German name \Doktorvater", and Des was in fact very much a mathemati- cal son to me. We quickly found that we shared the same passion for math- ematics. I suggested that he work on the computation of high-dimensional boundary link cobordism. Des's Ph.D. thesis was a complete solution of this 30-year old problem. The solution was beautiful, clever and original { as indeed was Des himself. Des and I kept in close touch in the years after he left Edinburgh, and the relationship naturally evolved into one of mathematical brothers and collabo- rators. Des was not only a wonderful student but also a wonderful teacher. I certainly learned a lot from him myself! The students of his topology course at IUB were especially inuenced by his teaching. Des made such an im- pression at IUB that he was invited to apply for a more permanent position there. In my letter of recommendation I wrote: \Dr. Sheiham is committed to both teaching and research in mathematics. He is a highly talented young mathematician who has a bright future ahead of him." It is a tragedy that he denied himself this future. A.R. viii Preface Noncommutative localization is a powerful algebraic technique for construct- ing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative lo- calizations of the fundamental group rings. The volume is the proceedings of a workshop on `Noncommutative lo- calization in algebra and topology' held at the International Centre for the Mathematical Sciences in Edinburgh on April 29 and 30, 2002, with 25 participants. The collection could be used as an introduction to noncom- mutative localization and its applications, but it is not an encyclopedia. Neither is it just a record of the talks at the meeting: the papers submitted by the participants are much more extensive than their talks, and in addi- tion the volume contains papers commissioned from non-participants. The `Historical Perspective' overleaf sets the papers in a historical context. The meeting and the proceedings have the aim of bringing together the algebraists and topologists interested in noncommutative localization. I was particularly pleased that Professor Paul Cohn attended the meeting and contributed to the proceedings. He invented the universal `Cohn noncom- mutative localization' technique which has turned out to be so useful both in its original algebraic setting and in its applications to topology. The meeting was supported by a Scheme 1 Grant of the London Mathe- matical Society, and was an activity of the European Union TMR Network ERB FMRX CT-97-0107 `Algebraic K-Theory, Linear Algebraic Groups and Related Structures'. The papers in the proceedings were refereed individ- ually. I am grateful to all the participants, to the speakers, to the authors of the papers, to the referees, to the LMS and the EU, and to the sta® at ICMS, for their contributions to the success of both the meeting and the proceedings. Additional material (such as errata) will be posted on http://www.maths.ed.ac.uk/~aar/books Andrew Ranicki Edinburgh, July 2005 ix Historical Perspective The localization of commutative rings is a classic technique of commuta- tive algebra, notably in the construction of the quotient ¯eld of an integral domain. The localization of noncommutative rings was pioneered by Ore in 1931, who introduced the `Ore condition' which allows noncommutative fractions. However, the ¯rst general reference to noncommutative localiza- tion in Mathematical Reviews only dates back to 1967; since then, the topic has grown in importance, and by now there are 525 references in total. The history of noncommutative localization in algebra is outlined in the article of Cohn in this volume, including both the Ore localization and the more general universal localization technique he himself introduced in 1971. The article of Beachy characterizes Ore localizations as at universal localizations. In the last 10 years the universal localization of group rings has been used to investigate the rationality of the L2-Betti numbers and the Isomorphism Conjecture in algebraic K-theory, as described in the articles of Linnell and Reich. Commutative localization entered algebraic topology with Serre's funda- mental contributions to homotopy theory in the early 1950's. Some 20 years later the work of Sullivan, Quillen, Kan and Bous¯eld developed the local- ization of spaces, which is now a standard method. The article of Dwyer gives a homotopy-theoretic interpretation of the Cohn universal localization, making a direct link between localization in algebra and topology. In the last 20 years noncommutative localization has been applied to the topology of manifolds via the Cappell-Shaneson homology version (1974) of the Browder-Novikov-Sullivan-Wall surgery theory (1962-1970), as well as to the circle-valued Morse-Novikov theory, and to codimension 1 splitting obstruction theory. The article of Ranicki surveys these applications. The article of Sheiham uses noncommutative localization to give a new interpre- tation of the high-dimensional boundary link cobordism invariants obtained in his 2001 Edinburgh Ph.D. thesis. Noncommutative localization is closely related to the quotient construc- tion of categories, particularly the Verdier quotient of triangulated categories developed in the 1960's. The article of Neeman makes this relation quite explicit, and also explains the connections with algebraic geometry via the work of Thomason. The Ore noncommutative localization is a useful tool in the recent devel- opment of noncommutative geometry, as described in the article of Skoda.· x Conference Participants 1. Pere Ara (Universitat Autonoma de Barcelona) 2. Andrew Baker (Glasgow University) 3. John Beachy (Northern Illinois University) 4. Tom Bridgeland (University of Edinburgh) 5. Jeremy Brookman (University of Edinburgh) 6. Ken Brown (Glasgow University) 7. Paul Cohn (University College London) 8. Diarmuid Crowley (Max Planck Institute, Bonn) 9. Matyas Domokos (University of Edinburgh) 10. Eivind Eriksen (University of Warwick) 11. Ben Franklin (Bristol University) 12. Michael Hudson (Bristol University) 13. Thomas Huettemann (Aberdeen University) 14. Colin Ingalls (University of Warwick) 15. Olav Arn¯nn Laudal (University of Oslo) 16. Tom Lenagan (University of Edinburgh) 17. Amnon Neeman (Australian National University) 18. Francesc Perera (Queen's University Belfast) 19. Andrew Ranicki (University of Edinburgh) 20. Holger Reich (UniversitÄatMÄunster) 21. Jeremy Rickard (Bristol University) 22. Aidan Scho¯eld (Bristol University) 23. Des Sheiham (University of California, Riverside) 24. James Shepherd (Bristol University) 25. Marco Varisco (UniversitÄatMÄunster) xi Conference Photo ICMS, 14 India Street, Edinburgh Bridgeland, Huettemann, Varisco, Crowley Ara, Domokos, Laudal, Eriksen, Brown, Beachy, Shepherd Perera, Neeman, Ranicki, Cohn, Lenagan,
Recommended publications
  • On the Semicontinuity of the Mod 2 Spectrum of Hypersurface Singularities
    1 ON THE SEMICONTINUITY OF THE MOD 2 SPECTRUM OF HYPERSURFACE SINGULARITIES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Bill Bruce 60 and Terry Wall 75 Liverpool, 18-22 June, 2012 2 A mathematical family tree Christopher Zeeman Frank Adams Terry Wall Andrew Casson Andrew Ranicki 3 The BNR project on singularities and surgery I Since 2011 have joined Andr´asN´emethi(Budapest) and Maciej Borodzik (Warsaw) in a project on the topological properties of the singularities of complex hypersurfaces. I The aim of the project is to study the topological properties of the singularity spectrum, defined using refinements of the eigenvalues of the monodromy of the Milnor fibre. I The project combines singularity techniques with algebraic surgery theory to study the behaviour of the spectrum under deformations. I Morse theory decomposes cobordisms of manifolds into elementary operations called surgeries. I Algebraic surgery does the same for cobordisms of chain complexes with Poincar´eduality { generalized quadratic forms. I The applications to singularities need a relative Morse theory, for cobordisms of manifolds with boundary and the algebraic analogues. 4 Fibred links I A link is a codimension 2 submanifold Lm ⊂ Sm+2 with neighbourhood L × D2 ⊂ Sm+2. I The complement of the link is the (m + 2)-dimensional manifold with boundary (C;@C) = (cl.(Sm+2nL × D2); L × S1) such that m+2 2 S = L × D [L×S1 C : I The link is fibred if the projection @C = L × S1 ! S1 can be extended to the projection of a fibre bundle p : C ! S1, and there is given a particular choice of extension.
    [Show full text]
  • MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28Th February, 2012 2 Timeline
    1 MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28th February, 2012 2 Timeline I 12th March, 1920. Born inL´od´z,Poland. I 22nd July, 1942. Married to Marcel in the Warsaw Ghetto. I 3rd February, 1943. Marcel and Tosia escape from Ghetto. I 1943-1944 Hidden by Polish family near Warsaw. I 7th September, 1944. Liberation by Red Army. I 1948-1949 London: Marcel is a Polish diplomat. I 30th December, 1948. Son Andrew born in London. I 1949-1958 Warsaw: Marcel writes about German literature. I 1958. Move from Poland to Germany. I 1959-1973 Hamburg: Marcel at Die Zeit. I 1973- Frankfurt a.M.: Marcel at the Frankfurter Allgemeine Zeitung. "Pope of German literature". I 1999 Exhibition of the Warsaw Ghetto drawings. I 29th April, 2011. Tosia dies in Frankfurt a.M. 3 Tosia's names I Tosia = Polish diminutive of Teofila. I 1920-1942 Teofila Langnas, maiden name. I 1942-1945 Teofila Reich, on marriage to Marcel Reich. I 1945-1958 Teofila Ranicki, after Marcel changes name to Ranicki, as more suitable for a Polish diplomat than Reich. I 1958- Teofila Reich-Ranicki, after Marcel changes name to Reich-Ranicki on return to Germany (where he had gone to school). 4 Tosia's parents Father: Pawe l Langnas, 1885-1940 Mother: Emilia Langnas, 1886-1942 5 L´od´z,1927-1933 I German school. I 6 L´od´z,1933-1939 I Polish school. I Interested in art, cinema, literature { but not mathematics! I Graduation photo 7 21st January, 1940 I Tosia was accepted for studying art at an Ecole´ des Beaux Arts, Paris, to start on 1st September, 1939.
    [Show full text]
  • Noncommutative Localization in Noncommutative Geometry
    Noncommutative localization in noncommutative geometry Zoran Skodaˇ Abstract The aim of these notes is to collect and motivate the basic localiza- tion toolbox for the geometric study of “spaces” locally described by noncommutative rings and their categories of modules. We present the basics of Ore localization of rings and modules in great detail. Common practical techniques are studied as well. We also describe a counterexample to a folklore test principle for Ore sets. Localization in negatively filtered rings arising in deformation theory is presented. A new notion of the differential Ore condition is introduced in the study of localization of differential calculi. To aid the geometrical viewpoint, localization is studied with em- phasis on descent formalism, flatness, abelian categories of quasicoher- ent sheaves and generalizations, and natural pairs of adjoint functors for sheaf and module categories. The key motivational theorems from the seminal works of Gabriel on localization, abelian categories and schemes are quoted without proof, as well as the related statements of Popescu, Eilenberg-Watts, Deligne and Rosenberg. The Cohn universal localization does not have good flatness prop- erties, but it is determined by the localization map already at the ring level, like the perfect localizations are. Cohn localization is here related to the quasideterminants of Gelfand and Retakh; and this may help arXiv:math/0403276v2 [math.QA] 1 Mar 2005 the understanding of both subjects. Contents 1 Introduction 2 2 Noncommutative geometry 6 3 Abstract localization 12 1 2 Noncommutative localization in noncommutative geometry 4 Ore localization for monoids 15 5 Ore localization for rings 22 6 Practical criteria for Ore sets 25 7 Ore localization for modules 30 8 Monads, comonads and gluing 33 9 Distributive laws and compatibility 40 10 Commutative localization 45 11 Ring maps vs.
    [Show full text]
  • Contemporary Mathematics 288
    CONTEMPORARY MATHEMATICS 288 Global Differential Geometry: The Mathematical Legacy ·of Alfred Gray International Congress on Differential Geometry September 18-23, 2000 Bilbao, Spain Marisa Fernandez Joseph A. Wolf Editors http://dx.doi.org/10.1090/conm/288 Selected Titles In This Series 288 Marisa Fernandez and Joseph A. Wolf, Editors, Global differential geometry: The mathematical legacy of Alfred Gray, 2001 287 Marlos A. G. Viana and Donald St. P. Richards, Editors, Algebraic methods in statistics and probability, 2001 286 Edward L. Green, Serkan HO!~ten, Reinhard C. Laubenbacher, and Victoria Ann Powers, Editors, Symbolic computation: Solving equations in algebra, geometry, and engineering, 2001 285 Joshua A. Leslie and Thierry P. Robart, Editors, The geometrical study of differential equations, 2001 284 Gaston M. N'Guerekata and Asamoah Nkwanta, Editors, Council for African American researchers in the mathematical sciences: Volume IV, 2001 283 Paul A. Milewski, Leslie M. Smith, Fabian Waleffe, and Esteban G. Tabak, Editors, Advances in wave interaction and turbulence, 2001 282 Arlan Ramsay and Jean Renault, Editors, Gruupoids in analysiR, gcnmetry, and physics, 2001 281 Vadim Olshevsky, Editor, Structured matrices in mathematics, computer science, and engineering II, 2001 280 Vadim Olshevsky, Editor, Structured matrices in mathematics, computer science, and engineering I, 2001 279 Alejandro Adem, Gunnar Carlsson, and Ralph Cohen, Editors, Topology, geometry, and algebra: Interactions and new directions, 2001 278 Eric Todd Quinto, Leon Ehrenpreis, Adel Faridani, Fulton Gonzalez, and Eric Grinberg, Editors, Radon transforms and tomography, 2001 277 Luca Capogna and Loredana Lanzani, Editors, Harmonic analysis and boundary value problems, 2001 276 Emma Previato, Editor, Advances in algebraic geometry motivated by physics, 2001 275 Alfred G.
    [Show full text]
  • Curriculum Vitae of Andrew Ranicki Born
    Curriculum vitae of Andrew Ranicki Born: London, 30th December, 1948 Dual UK / German citizen Cambridge University, B. A. 1969 Ph. D. 1973 (supervised by Prof. J. F. Adams and Mr. A. J. Casson) Trinity College Yeats Prize, 1970 Cambridge University Smith Prize, 1972 Research Fellow of Trinity College, Cambridge, 1972{1977 Visiting Member, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, 1973{1974 Princeton University : Instructor, 1977{1978 Assistant Professor, 1978{1982 Visiting Member, Institute for Advanced Studies, Princeton, 1981{1982 Edinburgh University : Lecturer, 1982{1987 Reader, 1987{1995 Professor of Algebraic Surgery, 1995{2016 Honorary Professorial Fellow, 2017{ Junior Whitehead Prize of London Mathematical Society, 1983 Visiting Professor, University of Kentucky, Lexington, 1985{1986 Visiting Member, SFB 170, G¨ottingenUniversity, 1987{1988 Fellow, Royal Society of Edinburgh, 1992 Senior Berwick Prize of London Mathematical Society, 1994 Leverhulme Trust Fellowship, 2001 Co-Organizer, Oberwolfach Conference on Topology, 1984{1991 British Topology Meeting, Edinburgh, 1985, 2001, 2011 Oberwolfach Conference on Surgery and L-theory, 1985, 1990 Oberwolfach Conference on the Novikov conjecture, 1993 Conference on Geometric Topology and Surgery, Josai, Japan, 1996 Special Session at AMS Regional Meeting, Memphis, Tennessee, 1997 Conference on Quadratic Forms and Their Applications, Dublin, 1999 Conference on Noncommutative Localization, ICMS, Edinburgh, 2002 Special Session at AMS Regional Meeting, Bloomington,
    [Show full text]
  • A Generalization of the Field of Fractions of an Integral Domain
    MICIIAUI), ROBERT EUGENE. A Generalization oi the Field of Fractions of an Integral Domain. (1970) Directed by: Dr. E. E. Posey pp. 21 I ii this paper the author deals with < he problem of construct- ing the field of fractions of an integral domain and a general i'. of one of the methods of construction used to construct a ring oi left quotients for an arbitrary ring. In this generalization thi author relies heavily upon the concept of a faithful complete Eilter and defines partial endomorphisms from the filter el erne into the ring. After partitioning these partial endomorphisms Lnti equivalence classes and after defining operations on the equlvalei classes the author then shows that the resultant structure Is I ring of left quotients. In addition to showing that a faithful complete filter assures the existence of a ring of left quotients the author shows that these rings of left quotients can be embedded in the Utumi ring oJ left quotients. The paper concludes with theorems showing necessary and Hiifflclfiil conditions for the classical ring oi left quotient! ,., fin}! i; to exist .in.l .i theorem establishing the uniqueness up to Isomorphism of the classical ring of left quotients oi a ri R. A GENERALIZATION OF THE FIELD OF FRACTIONS OF AN INTEGRAL DOMAIN by Robert Eugene Michaud A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Master of Arts Greensboro August, 1970 Approved by APPROVAL SHEET This thesis has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.
    [Show full text]
  • INJECTIVE MODULES OVER a PRTNCIPAL LEFT and RIGHT IDEAL DOMAIN, \Ryith APPLICATIONS
    INJECTIVE MODULES OVER A PRTNCIPAL LEFT AND RIGHT IDEAL DOMAIN, \ryITH APPLICATIONS By Alina N. Duca SUBMITTED IN PARTTAL FULFILLMENT OF THE REQUIREMENTS FOR TI{E DEGREE OF DOCTOR OFPHILOSOPHY AT UMVERSITY OF MAMTOBA WINNIPEG, MANITOBA April 3,2007 @ Copyright by Alina N. Duca, 2007 THE T.TNIVERSITY OF MANITOBA FACULTY OF GRADUATE STI]DIES ***** COPYRIGHT PERMISSION INJECTIVE MODULES OVER A PRINCIPAL LEFT AND RIGHT IDEAL DOMAIN, WITH APPLICATIONS BY Alina N. Duca A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfïllment of the requirement of the degree DOCTOR OF PHILOSOPHY Alina N. Duca @ 2007 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesidpracticum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University MicrofïIms Inc. to pubtish an abstract of this thesiVpracticum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. UNIVERSITY OF MANITOBA DEPARTMENT OF MATIIEMATICS The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "Injective Modules over a Principal Left and Right ldeal Domain, with Applications" by Alina N. Duca in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dated: April3.2007 External Examiner: K.R.Goodearl Research Supervisor: T.G.Kucera Examining Committee: G.Krause Examining Committee: W.Kocay T]NTVERSITY OF MANITOBA Date: April3,2007 Author: Alina N.
    [Show full text]
  • Assembly Maps in Bordism-Type Theories
    Assembly maps in bordism-type theories Frank Quinn Preface This paper is designed to give a careful treatment of some ideas which have been in use in casual and imprecise ways for quite some time, partic- ularly some introduced in my thesis. The paper was written in the period 1984{1990, so does not refer to recent applications of these ideas. The basic point is that a simple property of manifolds gives rise to an elaborate and rich structure including bordism, homology, and \assembly maps." The essential property holds in many constructs with a bordism fla- vor, so these all immediately receive versions of this rich structure. Not ev- erything works this way. In particular, while bundle-type theories (including algebraic K-theory) also have assembly maps and similar structures, they have them for somewhat di®erent reasons. One key idea is the use of spaces instead of sequences of groups to orga- nize invariants and obstructions. I ¯rst saw this idea in 1968 lecture notes by Colin Rourke on Dennis Sullivan's work on the Hauptvermutung ([21]). The idea was expanded in my thesis [14] and article [15], where \assembly maps" were introduced to study the question of when PL maps are ho- motopic to block bundle projections. This question was ¯rst considered by Andrew Casson, in the special case of bundles over a sphere. The use of ob- struction spaces instead of groups was the major ingredient of the extension to more general base spaces. The space ideas were expanded in a di®erent direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting for generalized cohomology theories.
    [Show full text]
  • Only a Comparison with Einstein Will Do Interview with Andrew Ranicki About His Father Marcel Reich-Ranicki, by Uwe Wittstock (FOCUS, 19 March, 2012)
    Only a comparison with Einstein will do Interview with Andrew Ranicki about his father Marcel Reich-Ranicki, by Uwe Wittstock (FOCUS, 19 March, 2012) We lived in Warsaw and I was 8 years old when my father asked me: "Which German writers do you know?" Not a typical question for a child in Poland. But since I could think, I had the many book spines on my father's shelves in front of my eyes, so I listed: "Goethe, Heine, Thomas Mann, Schiller, Anna Seghers ..." My father thought I had read the names on the books. But I didn't need to. Though it wasn't important, I only needed to close my eyes and saw them before me. And at meals he would tell me about the books in such an exciting way that I loved to listen and many of these stories have stuck with me. When my parents decided in 1958 to go to Germany and to send me to an English language school in Hamburg, my life became complicated. I was 9 years old and spoke neither German nor English. But my father had a similar experience 30 years earlier. His mother sent him at the age of 9 from Poland to Berlin, and he had to learn German in just a few months so he could go to school. I have the impression that he mastered the language and literature rather well. It turned out that my talents were not linguistic in nature, but mathe- matical. I fell in love with the world of geometry and still love it today.
    [Show full text]
  • Quotient Rings of Noetherian Module Finite Rings
    proceedings of the american mathematical society Volume 121, Number 2, June 1994 QUOTIENT RINGS OF NOETHERIAN MODULE FINITE RINGS A. W. CHATTERS AND C. R. HAJARNAVIS (Communicated by Lance W. Small) Abstract. Let R be a Noetherian ring which is a finite module over its centre C . We obtain a necessary and sufficient condition for R to have a full quotient ring. We also show that when such a quotient ring does exist, it is obtained by inverting those elements of C which are regular in R . 1. Introduction The problem of deciding when a Noetherian ring possesses a classical ring of quotients was posed by Goldie [4]. Apart from the general characterisation given by Ore's theorem, this question is still open. The most significant result in this area so far has been that of Stafford [13], who obtained a criterion to determine when a Noetherian ring is its own quotient ring. Stafford also comments [13, p. 385] on the difficulty in tackling the more general problem of finding necessary and sufficient conditions for a Noetherian ring to have a full ring of quotients, pointing out that this question is intimately connected with that of localising at a prime ideal where an easy characterisation is unlikely. In this article we restrict our attention to those Noetherian rings which are finitely generated as modules over their centres. This class is a rich source of examples both with and without quotient rings [2, 11]. Here the obstruction mentioned above does not apply since in this case an easy criterion given by Müller [10] to determine the localisibility of a prime ideal does exist.
    [Show full text]
  • The Torsion Theory at a Prime Ideal of a Right Noetherian Ring
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 25, 364-389 (1973) The Torsion Theory at a Prime Ideal of a Right Noetherian Ring JOACHIM LAMBEK AND GERHARD MICHLER Department of Mathematics, McGill University, Montreal 2, Quebec, Canada Received May 24, 1971 I. INTRODUCTION Let P be any two-sided prime ideal of the right Noetherian ring R. One is interested in associating with P a ring of quotients Rp which reduces to the usual localization of R at P when R is commutative. According to Gabriel [3], it suffices to associate with P an idempotent filter of right ideals, but in place of this we prefer to speak of the corresponding torsion theory 9’. There are two obvious candidates for 9: (1) The torsion theory q determined by the injective hull E,(R/P) of the right R-module R/P, a module T being torsion if hom,( T, E,(R/P)) = 0. (2) The torsion theory Ya determined by the filter of all right ideals D of R such that Y-ID n V(P) # o for all Y E R, where g(P) is the set of all c E R for which cx E P implies x E P; a module T being torsion if t-l0 = {Y E R 1 tr = 0} is in the filter for each 2 E T. It is one purpose of this paper to show that Yi = Ya (Corollary 3.10). We shall call this the torsion theory at the prime ideal P, or simply the P-torsion theory.
    [Show full text]
  • Localizations for Construction of Quantum Coset Spaces
    **************************************** BANACH CENTER PUBLICATIONS, VOLUME ** INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 200* LOCALIZATIONS FOR CONSTRUCTION OF QUANTUM COSET SPACES ZORAN SKODAˇ Department of Mathematics, Indiana University Rawles Hall - Bloomington, IN 47405, USA E-mail: [email protected] Abstract. Viewing comodule algebras as the noncommutative analogues of affine varieties with affine group actions, we propose rudiments of a localization approach to nonaffine Hopf al- gebraic quotients of noncommutative affine varieties corresponding to comodule algebras. After reviewing basic background on noncommutative localizations, we introduce localizations com- patible with coactions. Coinvariants of these localized coactions give local information about quotients. We define Zariski locally trivial quantum group algebraic principal and associated bundles. Compatible localizations induce localizations on the categories of Hopf modules. Their interplay with the functor of taking coinvariants and its left adjoint is stressed out. Using localization approach, we constructed a natural class of examples of quantum coset spaces, related to the quantum flag varieties of type A of other authors. Noncommutative Gauss decomposition via quasideterminants reveals a new structure in noncommutative matrix bialge- bras. In the quantum case, calculations with quantum minors yield the structure theorems. Notation. Ground field is k and we assume it is of characteristic zero. If we deal just with one k-Hopf algebra, say B, the comultiplication is ∆ : B → B ⊗ B, unit map η : k → B, counit : B → k, multiplication µ : B ⊗ B → B, and antipode (coinverse) is S : B → B. Warning: letter S often stands for a generic Ore set. We use [56, 49, 38, 74] P Sweedler notation ∆(h) = h(1) ⊗ h(2) with or without explicit summation sign, as well P as its extension for coactions: ρ(v) = v(0) ⊗ v(1), where the zero-component is in the comodule and nonzero component(s) in the coalgebra.
    [Show full text]