Edinburgh Research Explorer

Total Page:16

File Type:pdf, Size:1020Kb

Edinburgh Research Explorer Edinburgh Research Explorer Signatures in algebra, topology and dynamics Citation for published version: Ghys, E & Ranicki, A 2016, 'Signatures in algebra, topology and dynamics' Ensaios Matemáticos, vol. 30, pp. 1-173. Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Ensaios Matemáticos General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 Signatures in algebra, topology and dynamics Etienne´ Ghys, Andrew Ranicki 31st December, 2015 arXiv:1512.09258v1 [math.AT] 31 Dec 2015 E.G A.R. UMPA UMR 5669 CNRS School of Mathematics, ENS Lyon University of Edinburgh Site Monod James Clerk Maxwell Building 46 All´eed'Italie Peter Guthrie Tait Road 69364 Lyon Edinburgh EH9 3FD France Scotland, UK [email protected] [email protected] 1 Contents 1 Algebra 6 1.1 The basic definitions . .6 1.2 Linear congruence . .7 1.3 The signature of a symmetric matrix . 11 1.4 Orthogonal congruence . 13 1.5 Continued fractions, tridiagonal matrices and signatures . 22 1.6 Sturm's theorem and its reformulation by Sylvester . 27 1.7 Witt groups of fields . 36 1.8 The Witt groups of the function field R(X), ordered fields and Q.................................. 42 2 Topology 53 2.1 Even-dimensional manifolds . 53 2.2 Cobordism . 58 2.3 Odd-dimensional manifolds . 61 2.4 The union of manifolds with boundary; Novikov additivity and Wall nonadditivity of the signature . 65 2.5 Plumbing: from quadratic forms to manifolds . 72 3 Knots, links, braids and signatures 78 3.1 Knots, links, Seifert surfaces and complements . 78 3.2 Signatures of knots : a tale from the sixties . 83 3.3 Two great papers by Milnor and the modern approach . 84 3.4 Braids . 89 3.5 Knots and signatures in higher dimensions . 93 4 The symplectic group and the Maslov class 95 4.1 A very brief history of the symplectic group . 95 4.2 The Maslov class . 98 4.3 A short recollection of group cohomology . 100 4.4 The topology of Λn ........................ 101 4.5 Maslov indices and the universal cover of Λn .......... 102 4.6 The Maslov class as a bounded cohomology class . 105 4.7 Picture in the case n =2..................... 109 2 5 Dynamics 111 5.1 The Calabi and Ruelle invariant . 111 5.2 The Conley-Zehnder index . 112 5.3 Knots and dynamics . 114 6 Number theory, topology and signatures 117 6.1 The modular group SL(2; Z)................... 117 6.2 Torus bundles and their signatures . 119 6.3 Lens spaces . 123 6.4 Dedekind sums . 125 7 Appendix: Algebraic L-theory of rings with involution and the localization exact sequence 128 7.1 Forms over a ring with involution . 129 7.2 The localization exact sequence . 133 3 Introduction There is no doubt that quadratic forms are among the most basic and impor- tant objects in mathematics. The distinction between an ellipse, a parabola and a hyperbola belongs to the standard curriculum of undergraduate stu- dents in mathematics, and Sylvester's 1852 Law of Inertia for quadratic forms represents the formalization of this fact. In a suitable basis, any quadratic form in Rn can be written as 2 2 2 2 2 x1 + x2 + ··· + xp − xp+1 − · · · − xp+q for some integers 0 6 p; q 6 n with p + q 6 n. These integers are uniquely defined by the quadratic form, and are the same for two forms if and only if the forms are linearly congruent. The sum p+q is the rank and the difference p−q is the signature of the quadratic form. In other words, Sylvester's Law of Inertia asserts that for any n > 1 the number of linear congruence classes of n quadratic forms in R is the number of ordered pairs (p; q) with 0 6 p; q 6 n, p + q 6 n (which is equal to (n + 1)(n + 2)=2). It is not a surprise that from these humble beginnings the theory of quadratic forms has percolated to the full body of mathematics, in many different guises. It would require a large encyclopedia to keep track of all these appearances, and it is certainly not our goal to provide such a com- pendium here. In this survey paper, we would like to present some morceaux choisis with the main purpose of serving as a general introduction to the other papers in these volumes, which deal with the signatures of braids. As the title suggests, we shall concentrate on algebra, topology, and dynamics. Even though all the material that we describe is standard, it is usually scattered in the literature. For instance, books and papers dealing with Hamiltonian dynamics usually do not discuss Wall non additivity of signatures. Section 1 contains very standard facts about quadratic forms in Rn. We tried to give some historical flavour to our presentation. A common thread will be Sturm's theorem, counting real roots of polynomials. From its original formulation as a number of sign variations, we shall describe its reformulation by Sylvester as the signature of a symmetric matrix, and then as an equality in a suitable Witt group. Section 2 is topological. The homology of a manifold is equipped with intersection forms. Therefore signatures came into play, around 1940, and 4 serve as invariants of manifolds. Section 3 deals with the Maslov class. One could easily write thick books on this topic (that probably nobody would read) and we had to limit our- selves to the basics. It is amazing how ubiquitous this class can be and it is sometimes difficult to recognize it. There are connections with mathematical physics, topology, number theory, dynamics, geometry, bounded cohomology etc. In the final sections, we choose three typical applications, among many other possibilities: Section 4 presents some aspects of dynamical systems, specifically hamil- tonian, for which signatures are relevant. Section 5 goes deeper in some topological aspects. In particular, we de- scribe the link between the Wall non additivity and the Maslov class. Section 6 describes some fascinating connections with number theory. Section 7 is an appendix on the algebraic L-theory used in surgery ob- struction theory, which generalizes some of the algebraic techniques presented here to forms over (noncommutative) rings with involution. We thank the American Institute of Mathematics in Palo Alto, at which we organized a meeting on the \Many facets of Maslov invariants" in April 2014. Here are our signatures: 5 1 Algebra 1.1 The basic definitions Let us begin with some very basic definitions from linear algebra. In this section we shall be mainly considering matrices over R. An m × n matrix S = (sij) with entries sij 2 R (1 6 i 6 m, 1 6 j 6 n) corresponds to a bilinear form (or pairing) of real vector spaces: m n m n X X S : ((x1; x2; : : : ; xm); (y1; y2; : : : ; yn)) 2 R × R 7! sijxiyj 2 R: i=1 j=1 ∗ ∗ The transpose of an m×n matrix S = (sij) is the n×m matrix S = (sji) ∗ with sji = sij: An n × n matrix S is symmetric if S∗ = S. Quadratic forms correspond to symmetric matrices S. For v = (x1; : : : ; xn) 2 Rn, we set Q(v) = S(v; v); with S(v1; v2) = (Q(v1 + v2) − Q(v1) − Q(v2))=2: A quadratic form Q(V ) (or the corresponding symmetric matrix S) is positive definite (resp. negative definite) if Q(v) > 0 (resp. Q(v) < 0) for all non zero v 2 Rn. Two symmetric n × n matrices S; T are linearly congruent if T = A∗SA for an invertible n × n matrix A. A linear congruence can be regarded as an isomorphism A : Rn ! Rn of real vector spaces such that T (v1; v2) = S(Av1; Av2) 2 R: The spectrum of an n × n matrix S is the set of eigenvalues, i.e. the roots λ 2 C of the characteristic polynomial det(XIn − S) 2 R[X]. In general, linearly congruent symmetric matrices S; T do not have the same characteristic polynomial and spectrum. However, it is significant (and by no means obvious) that symmetric matrices have real eigenvalues, and that the eigenvalues of linearly congruent symmetric matrices have the same signs. Two n × n matrices S; T are conjugate if T = A−1SA for an invertible n × n matrix A, in which case S; T have the same characteristic polynomial det(XIn − T ) = det(XIn − S) and hence the same eigenvalues. An n × n 6 matrix A is orthogonal if it is invertible and A−1 = A∗. This is equivalent to 2 2 n the preservation of the quadratic form x1 +···+xn in R . Two n×n matrices S; T are orthogonally congruent if T = A∗SA for an orthogonal n × n matrix A, in which case they are both linearly congruent and conjugate. 1.2 Linear congruence The first basic theorem is that any quadratic form Q(x1; : : : ; xn) with real coefficients can be written as a sum, or difference, of squares of linear forms.
Recommended publications
  • On the Semicontinuity of the Mod 2 Spectrum of Hypersurface Singularities
    1 ON THE SEMICONTINUITY OF THE MOD 2 SPECTRUM OF HYPERSURFACE SINGULARITIES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Bill Bruce 60 and Terry Wall 75 Liverpool, 18-22 June, 2012 2 A mathematical family tree Christopher Zeeman Frank Adams Terry Wall Andrew Casson Andrew Ranicki 3 The BNR project on singularities and surgery I Since 2011 have joined Andr´asN´emethi(Budapest) and Maciej Borodzik (Warsaw) in a project on the topological properties of the singularities of complex hypersurfaces. I The aim of the project is to study the topological properties of the singularity spectrum, defined using refinements of the eigenvalues of the monodromy of the Milnor fibre. I The project combines singularity techniques with algebraic surgery theory to study the behaviour of the spectrum under deformations. I Morse theory decomposes cobordisms of manifolds into elementary operations called surgeries. I Algebraic surgery does the same for cobordisms of chain complexes with Poincar´eduality { generalized quadratic forms. I The applications to singularities need a relative Morse theory, for cobordisms of manifolds with boundary and the algebraic analogues. 4 Fibred links I A link is a codimension 2 submanifold Lm ⊂ Sm+2 with neighbourhood L × D2 ⊂ Sm+2. I The complement of the link is the (m + 2)-dimensional manifold with boundary (C;@C) = (cl.(Sm+2nL × D2); L × S1) such that m+2 2 S = L × D [L×S1 C : I The link is fibred if the projection @C = L × S1 ! S1 can be extended to the projection of a fibre bundle p : C ! S1, and there is given a particular choice of extension.
    [Show full text]
  • Lecture 15. De Rham Cohomology
    Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • Some Notes About Simplicial Complexes and Homology II
    Some notes about simplicial complexes and homology II J´onathanHeras J. Heras Some notes about simplicial homology II 1/19 Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 2/19 Simplicial Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 3/19 Simplicial Complexes Simplicial Complexes Definition Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V . Definition Let α and β be simplices over V , we say α is a face of β if α is a subset of β. Definition An ordered (abstract) simplicial complex over V is a set of simplices K over V satisfying the property: 8α 2 K; if β ⊆ α ) β 2 K Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made of the simplices of cardinality n + 1. J. Heras Some notes about simplicial homology II 4/19 Simplicial Complexes Simplicial Complexes 2 5 3 4 0 6 1 V = (0; 1; 2; 3; 4; 5; 6) K = f;; (0); (1); (2); (3); (4); (5); (6); (0; 1); (0; 2); (0; 3); (1; 2); (1; 3); (2; 3); (3; 4); (4; 5); (4; 6); (5; 6); (0; 1; 2); (4; 5; 6)g J. Heras Some notes about simplicial homology II 5/19 Chain Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J.
    [Show full text]
  • Noncommutative Localization in Algebra and Topology
    Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol.
    [Show full text]
  • Homology Groups of Homeomorphic Topological Spaces
    An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K.
    [Show full text]
  • MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28Th February, 2012 2 Timeline
    1 MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28th February, 2012 2 Timeline I 12th March, 1920. Born inL´od´z,Poland. I 22nd July, 1942. Married to Marcel in the Warsaw Ghetto. I 3rd February, 1943. Marcel and Tosia escape from Ghetto. I 1943-1944 Hidden by Polish family near Warsaw. I 7th September, 1944. Liberation by Red Army. I 1948-1949 London: Marcel is a Polish diplomat. I 30th December, 1948. Son Andrew born in London. I 1949-1958 Warsaw: Marcel writes about German literature. I 1958. Move from Poland to Germany. I 1959-1973 Hamburg: Marcel at Die Zeit. I 1973- Frankfurt a.M.: Marcel at the Frankfurter Allgemeine Zeitung. "Pope of German literature". I 1999 Exhibition of the Warsaw Ghetto drawings. I 29th April, 2011. Tosia dies in Frankfurt a.M. 3 Tosia's names I Tosia = Polish diminutive of Teofila. I 1920-1942 Teofila Langnas, maiden name. I 1942-1945 Teofila Reich, on marriage to Marcel Reich. I 1945-1958 Teofila Ranicki, after Marcel changes name to Ranicki, as more suitable for a Polish diplomat than Reich. I 1958- Teofila Reich-Ranicki, after Marcel changes name to Reich-Ranicki on return to Germany (where he had gone to school). 4 Tosia's parents Father: Pawe l Langnas, 1885-1940 Mother: Emilia Langnas, 1886-1942 5 L´od´z,1927-1933 I German school. I 6 L´od´z,1933-1939 I Polish school. I Interested in art, cinema, literature { but not mathematics! I Graduation photo 7 21st January, 1940 I Tosia was accepted for studying art at an Ecole´ des Beaux Arts, Paris, to start on 1st September, 1939.
    [Show full text]
  • The Decomposition Theorem, Perverse Sheaves and the Topology Of
    The decomposition theorem, perverse sheaves and the topology of algebraic maps Mark Andrea A. de Cataldo and Luca Migliorini∗ Abstract We give a motivated introduction to the theory of perverse sheaves, culminating in the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber. A goal of this survey is to show how the theory develops naturally from classical constructions used in the study of topological properties of algebraic varieties. While most proofs are omitted, we discuss several approaches to the decomposition theorem, indicate some important applications and examples. Contents 1 Overview 3 1.1 The topology of complex projective manifolds: Lefschetz and Hodge theorems 4 1.2 Families of smooth projective varieties . ........ 5 1.3 Singular algebraic varieties . ..... 7 1.4 Decomposition and hard Lefschetz in intersection cohomology . 8 1.5 Crash course on sheaves and derived categories . ........ 9 1.6 Decomposition, semisimplicity and relative hard Lefschetz theorems . 13 1.7 InvariantCycletheorems . 15 1.8 Afewexamples.................................. 16 1.9 The decomposition theorem and mixed Hodge structures . ......... 17 1.10 Historicalandotherremarks . 18 arXiv:0712.0349v2 [math.AG] 16 Apr 2009 2 Perverse sheaves 20 2.1 Intersection cohomology . 21 2.2 Examples of intersection cohomology . ...... 22 2.3 Definition and first properties of perverse sheaves . .......... 24 2.4 Theperversefiltration . .. .. .. .. .. .. .. 28 2.5 Perversecohomology .............................. 28 2.6 t-exactness and the Lefschetz hyperplane theorem . ...... 30 2.7 Intermediateextensions . 31 ∗Partially supported by GNSAGA and PRIN 2007 project “Spazi di moduli e teoria di Lie” 1 3 Three approaches to the decomposition theorem 33 3.1 The proof of Beilinson, Bernstein, Deligne and Gabber .
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Homology and Homological Algebra, D. Chan
    HOMOLOGY AND HOMOLOGICAL ALGEBRA, D. CHAN 1. Simplicial complexes Motivating question for algebraic topology: how to tell apart two topological spaces? One possible solution is to find distinguishing features, or invariants. These will be homology groups. How do we build topological spaces and record on computer (that is, finite set of data)? N Definition 1.1. Let a0, . , an ∈ R . The span of a0, . , an is ( n ) X a0 . an := λiai | λi > 0, λ1 + ... + λn = 1 i=0 = convex hull of {a0, . , an}. The points a0, . , an are geometrically independent if a1 − a0, . , an − a0 is a linearly independent set over R. Note that this is independent of the order of a0, . , an. In this case, we say that the simplex Pn a0 . an is n -dimensional, or an n -simplex. Given a point i=1 λiai belonging to an n-simplex, we say it has barycentric coordinates (λ0, . , λn). One can use geometric independence to show that this is well defined. A (proper) face of a simplex σ = a0 . an is a simplex spanned by a (proper) subset of {a0, . , an}. Example 1.2. (1) A 1-simplex, a0a1, is a line segment, a 2-simplex, a0a1a2, is a triangle, a 3-simplex, a0a1a2a3 is a tetrahedron, etc. (2) The points a0, a1, a2 are geometrically independent if they are distinct and not collinear. (3) Midpoint of a0a1 has barycentric coordinates (1/2, 1/2). (4) Let a0 . a3 be a 3-simplex, then the proper faces are the simplexes ai1 ai2 ai3 , ai4 ai5 , ai6 where 0 6 i1, .
    [Show full text]
  • Lecture 8: More Characteristic Classes and the Thom Isomorphism We
    Lecture 8: More characteristic classes and the Thom isomorphism We begin this lecture by carrying out a few of the exercises in Lecture 1. We take advantage of the fact that the Chern classes are stable characteristic classes, which you proved in Exercise 7.71 from the Whitney sum formula. We also give a few more computations. Then we turn to the Euler class, which is decidedly unstable. We approach it via the Thom class of an oriented real vector bundle. We introduce the Thom complex of a real vector bundle. This construction plays an important role in the course. In lecture I did not prove the existence of the Thom class of an oriented real vector bundle. Here I do so—and directly prove the basic Thom isomorphism theorem—when the base is a CW complex. It follows from Morse theory that a smooth manifold is a CW complex, something we may prove later in the course. I need to assume the theorem that a vector bundle over a contractible base (in this case a closed ball) is trivializable. For a smooth bundle this follows immediately from Proposition 7.3. The book [BT] is an excellent reference for this lecture, especially Chapter IV. Elementary computations with Chern classes (8.1) Stable tangent bundle of projective space. We begin with a stronger version of Proposi- tion 7.51. Recall the exact sequence (7.54) of vector bundles over CPn. Proposition 8.2. The tangent bundle of CPn is stably equivalent to (S∗)⊕(n+1). Proof. The exact sequence (7.54) shows that Q ⊕ S =∼ Cn+1.
    [Show full text]
  • The Cohomology Ring of the Real Locus of the Moduli Space of Stable Curves of Genus 0 with Marked Points
    ANNALS OF MATHEMATICS The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points By Pavel Etingof, Andre´ Henriques, Joel Kamnitzer, and Eric M. Rains SECOND SERIES, VOL. 171, NO. 2 March, 2010 anmaah Annals of Mathematics, 171 (2010), 731–777 The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points By PAVEL ETINGOF, ANDRÉ HENRIQUES, JOEL KAMNITZER, and ERIC M. RAINS Abstract We compute the Poincaré polynomial and the cohomology algebra with rational coefficients of the manifold Mn of real points of the moduli space of algebraic curves of genus 0 with n labeled points. This cohomology is a quadratic algebra, and we conjecture that it is Koszul. We also compute the 2-local torsion in the cohomology of Mn. As was shown by the fourth author, the cohomology of Mn does not have odd torsion, so that the above determines the additive structure of the integral homology and cohomology. Further, we prove that the rational homology operad of Mn is the operad of 2-Gerstenhaber algebras, which is closely related to the Hanlon-Wachs operad of 2-Lie algebras (generated by a ternary bracket). Finally, using Drinfeld’s theory of quantization of coboundary Lie quasibialgebras, we show that a large series of representations of the quadratic dual Lie algebra Ln of H .Mn; Q/ (associated to such quasibialgebras) factors through the the natural projection of Ln to the associated graded Lie algebra of the prounipotent completion of the fundamental group of Mn.
    [Show full text]