Contemporary Mathematics 288
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Semicontinuity of the Mod 2 Spectrum of Hypersurface Singularities
1 ON THE SEMICONTINUITY OF THE MOD 2 SPECTRUM OF HYPERSURFACE SINGULARITIES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar Bill Bruce 60 and Terry Wall 75 Liverpool, 18-22 June, 2012 2 A mathematical family tree Christopher Zeeman Frank Adams Terry Wall Andrew Casson Andrew Ranicki 3 The BNR project on singularities and surgery I Since 2011 have joined Andr´asN´emethi(Budapest) and Maciej Borodzik (Warsaw) in a project on the topological properties of the singularities of complex hypersurfaces. I The aim of the project is to study the topological properties of the singularity spectrum, defined using refinements of the eigenvalues of the monodromy of the Milnor fibre. I The project combines singularity techniques with algebraic surgery theory to study the behaviour of the spectrum under deformations. I Morse theory decomposes cobordisms of manifolds into elementary operations called surgeries. I Algebraic surgery does the same for cobordisms of chain complexes with Poincar´eduality { generalized quadratic forms. I The applications to singularities need a relative Morse theory, for cobordisms of manifolds with boundary and the algebraic analogues. 4 Fibred links I A link is a codimension 2 submanifold Lm ⊂ Sm+2 with neighbourhood L × D2 ⊂ Sm+2. I The complement of the link is the (m + 2)-dimensional manifold with boundary (C;@C) = (cl.(Sm+2nL × D2); L × S1) such that m+2 2 S = L × D [L×S1 C : I The link is fibred if the projection @C = L × S1 ! S1 can be extended to the projection of a fibre bundle p : C ! S1, and there is given a particular choice of extension. -
Noncommutative Localization in Algebra and Topology
Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol. -
MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28Th February, 2012 2 Timeline
1 MY MOTHER TEOFILA REICH-RANICKI Andrew Ranicki Edinburgh German Circle, 28th February, 2012 2 Timeline I 12th March, 1920. Born inL´od´z,Poland. I 22nd July, 1942. Married to Marcel in the Warsaw Ghetto. I 3rd February, 1943. Marcel and Tosia escape from Ghetto. I 1943-1944 Hidden by Polish family near Warsaw. I 7th September, 1944. Liberation by Red Army. I 1948-1949 London: Marcel is a Polish diplomat. I 30th December, 1948. Son Andrew born in London. I 1949-1958 Warsaw: Marcel writes about German literature. I 1958. Move from Poland to Germany. I 1959-1973 Hamburg: Marcel at Die Zeit. I 1973- Frankfurt a.M.: Marcel at the Frankfurter Allgemeine Zeitung. "Pope of German literature". I 1999 Exhibition of the Warsaw Ghetto drawings. I 29th April, 2011. Tosia dies in Frankfurt a.M. 3 Tosia's names I Tosia = Polish diminutive of Teofila. I 1920-1942 Teofila Langnas, maiden name. I 1942-1945 Teofila Reich, on marriage to Marcel Reich. I 1945-1958 Teofila Ranicki, after Marcel changes name to Ranicki, as more suitable for a Polish diplomat than Reich. I 1958- Teofila Reich-Ranicki, after Marcel changes name to Reich-Ranicki on return to Germany (where he had gone to school). 4 Tosia's parents Father: Pawe l Langnas, 1885-1940 Mother: Emilia Langnas, 1886-1942 5 L´od´z,1927-1933 I German school. I 6 L´od´z,1933-1939 I Polish school. I Interested in art, cinema, literature { but not mathematics! I Graduation photo 7 21st January, 1940 I Tosia was accepted for studying art at an Ecole´ des Beaux Arts, Paris, to start on 1st September, 1939. -
Giuseppe Tallini (1930-1995)
Bollettino U. M. I. (8)1-B (1998), 451-474 — GIUSEPPE TALLINI (1930-1995) La vita. Personalità scientifica dinamica e prorompente, "iuseppe Tallini verrà certamente ricordato nella storia della matematica di questo secolo per aver dato un impulso decisi- vo allo sviluppo della combinatoria in Italia, continuando insieme ad Adriano Barlotti a promuovere quella scuola di geometria combinatoria, fondata da Beniamino Segre, che , oggi una delle più affermate in campo internazionale. Fondamentali sono i suoi risultati riguardanti gli archi e le calotte in spazi di Galois, la caratterizzazione grafica di varietà algebriche notevoli, le strutture combinatorie d’in- cidenza (matroidi, spazi lineari e semilineari, spazi polari), la teoria dei disegni combina- tori e dei sistemi di *teiner e quella dei codici correttori. Grande ammiratore della cultura classica greco-romana, della cui visione della vita si sentiva profondamente partecipe, ha saputo coniugare una intensissima attività scienti- fica, che lo assorbiva &#asi freneticamente, a omenti di sapiente otium, nei quali si de- dicava preferibilmente a quelle letture di storia antica che egli prediligeva sopra ogni al- tre. Di temperamento naturalmente cordiale ed aperto, era dotato di )randissimo calore umano ed amava la vita in tutte le sue manifestazioni. Nel 1993 era stato colpito da una sclerosi laterale amiotrofica, che lo aveva paralizza- to e poi, negli ultimi mesi del 1994, reso afono. La malattia, che lo condurrà alla morte il 4 aprile 1995 e della cui gravità era consapevole, non ne ha mai fiaccato lo spirito, la luci- dità della mente, la capacità di comunicare idee matematiche. Con grande serenità aveva accettato la crescente enomazione fisica, continuando il lavoro di sempre, in ciò anche sostenuto dal premuroso affetto dei figli e della moglie, che gli è stata amorevolmente %i- cina con dedizione grandissima. -
Arxiv:1106.4415V1 [Math.DG] 22 Jun 2011 R,Rno Udai Form
JORDAN STRUCTURES IN MATHEMATICS AND PHYSICS Radu IORDANESCU˘ 1 Institute of Mathematics of the Romanian Academy P.O.Box 1-764 014700 Bucharest, Romania E-mail: [email protected] FOREWORD The aim of this paper is to offer an overview of the most important applications of Jordan structures inside mathematics and also to physics, up- dated references being included. For a more detailed treatment of this topic see - especially - the recent book Iord˘anescu [364w], where sugestions for further developments are given through many open problems, comments and remarks pointed out throughout the text. Nowadays, mathematics becomes more and more nonassociative (see 1 § below), and my prediction is that in few years nonassociativity will govern mathematics and applied sciences. MSC 2010: 16T25, 17B60, 17C40, 17C50, 17C65, 17C90, 17D92, 35Q51, 35Q53, 44A12, 51A35, 51C05, 53C35, 81T05, 81T30, 92D10. Keywords: Jordan algebra, Jordan triple system, Jordan pair, JB-, ∗ ∗ ∗ arXiv:1106.4415v1 [math.DG] 22 Jun 2011 JB -, JBW-, JBW -, JH -algebra, Ricatti equation, Riemann space, symmet- ric space, R-space, octonion plane, projective plane, Barbilian space, Tzitzeica equation, quantum group, B¨acklund-Darboux transformation, Hopf algebra, Yang-Baxter equation, KP equation, Sato Grassmann manifold, genetic alge- bra, random quadratic form. 1The author was partially supported from the contract PN-II-ID-PCE 1188 517/2009. 2 CONTENTS 1. Jordan structures ................................. ....................2 § 2. Algebraic varieties (or manifolds) defined by Jordan pairs ............11 § 3. Jordan structures in analysis ....................... ..................19 § 4. Jordan structures in differential geometry . ...............39 § 5. Jordan algebras in ring geometries . ................59 § 6. Jordan algebras in mathematical biology and mathematical statistics .66 § 7. -
AMSE.2018.9760464.Pdf (3.850Mb)
Review Article The State of the Art: Application of Green Technology in Sustainable Pavement Wenjuan Sun,1,2 Guoyang Lu,3 Cheng Ye,4,5 Shiwu Chen,4,5 Yue Hou ,5 Dawei Wang ,3,6 Linbing Wang ,5,7 and Markus Oeser3 1Joint USTB-Virginia Tech Laboratory on Multifunctional Materials, National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2Lehigh University, Bethlehem, PA 18015, USA 3Institute of Highway Engineering, RWTH Aachen University, D52074 Aachen, Germany 4University of Science and Technology Beijing, Beijing 100083, China 5National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 6School of Transportation Science & Engineering, Harbin Institute of Technology, Harbin 150090, China 7Virginia Tech, Blacksburg, VA 24061, USA Correspondence should be addressed to Dawei Wang; [email protected] and Linbing Wang; [email protected] Received 7 January 2018; Revised 29 March 2018; Accepted 11 April 2018; Published 3 June 2018 Academic Editor: Enzo Martinelli Copyright © 2018 Wenjuan Sun et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A wide range of literature on predominant green technologies for sustainable pavements is summarized in this paper. It covers two major aspects: energy harvesting technologies and permeable pavement systems. Fundamental mechanics of energy harvesting techniques and possible designs of energy harvesters are described, with the evaluation of energy conversion efficiency, and advantages and disadvantages. In addition, the designs of permeable pavement systems are discussed, along with their advantages and disadvantages. -
Curriculum Vitae of Andrew Ranicki Born
Curriculum vitae of Andrew Ranicki Born: London, 30th December, 1948 Dual UK / German citizen Cambridge University, B. A. 1969 Ph. D. 1973 (supervised by Prof. J. F. Adams and Mr. A. J. Casson) Trinity College Yeats Prize, 1970 Cambridge University Smith Prize, 1972 Research Fellow of Trinity College, Cambridge, 1972{1977 Visiting Member, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, 1973{1974 Princeton University : Instructor, 1977{1978 Assistant Professor, 1978{1982 Visiting Member, Institute for Advanced Studies, Princeton, 1981{1982 Edinburgh University : Lecturer, 1982{1987 Reader, 1987{1995 Professor of Algebraic Surgery, 1995{2016 Honorary Professorial Fellow, 2017{ Junior Whitehead Prize of London Mathematical Society, 1983 Visiting Professor, University of Kentucky, Lexington, 1985{1986 Visiting Member, SFB 170, G¨ottingenUniversity, 1987{1988 Fellow, Royal Society of Edinburgh, 1992 Senior Berwick Prize of London Mathematical Society, 1994 Leverhulme Trust Fellowship, 2001 Co-Organizer, Oberwolfach Conference on Topology, 1984{1991 British Topology Meeting, Edinburgh, 1985, 2001, 2011 Oberwolfach Conference on Surgery and L-theory, 1985, 1990 Oberwolfach Conference on the Novikov conjecture, 1993 Conference on Geometric Topology and Surgery, Josai, Japan, 1996 Special Session at AMS Regional Meeting, Memphis, Tennessee, 1997 Conference on Quadratic Forms and Their Applications, Dublin, 1999 Conference on Noncommutative Localization, ICMS, Edinburgh, 2002 Special Session at AMS Regional Meeting, Bloomington, -
Unione Matematica Italiana 1921 - 2012
Unione Matematica Italiana 1921 - 2012 Unione Matematica Italiana Soggetto produttore Unione Matematica Italiana Estremi cronologici 1921 - Tipologia Ente Tipologia ente ente di cultura, ricreativo, sportivo, turistico Profilo storico / Biografia La fondazione dell’Unione Matematica Italiana è strettamente legata alla costituzione del Consiglio Internazionale delle Ricerche e al voto da questo formulato a Bruxelles nel luglio 1919 nel quale si auspicava il sorgere di «Unioni Internazionali» per settori scientifici, ai quali avrebbero dovuto aderire dei «Comitati nazionali» costituiti «ad iniziativa delle Accademie nazionali scientifiche o dei Consigli Nazionali delle Ricerche». In Italia, non essendo ancora stato costituito il C.N.R., fu l’Accademia dei Lincei, nella persona del suo presidente Vito Volterra, a farsi promotrice della costituzione dei Comitati nazionali. Per il Comitato della matematica Vito Volterra propose nel 1920, insieme a un gruppo di matematici, fra cui Luigi Bianchi, Pietro Burgatti, Roberto Marcolongo, Carlo Somigliana e Giovanni Vacca, la costituzione di una Unione Matematica Italiana, redigendo un primo schema di programma che poneva fra gli scopi dell’Unione l’incoraggiamento alla scienza pura, il ravvicinamento tra la matematica pura e le altre scienze, l’orientamento ed il progresso dell’insegnamento e l’organizzazione, la preparazione e la partecipazione a congressi nazionali ed internazionali. La proposta fu accolta dall’Accademia dei Lincei nel marzo 1921 e quale presidente dell’Unione venne designato Salvatore Pincherle, illustre matematico dell'Università di Bologna. L’Unione Matematica Italiana (UMI) nacque ufficialmente il 31 marzo 1922 con la diffusione da parte di Salvatore Pincherle di una lettera con la quale presentava il programma della Società invitando i destinatari ad aderire all’iniziativa. -
Assembly Maps in Bordism-Type Theories
Assembly maps in bordism-type theories Frank Quinn Preface This paper is designed to give a careful treatment of some ideas which have been in use in casual and imprecise ways for quite some time, partic- ularly some introduced in my thesis. The paper was written in the period 1984{1990, so does not refer to recent applications of these ideas. The basic point is that a simple property of manifolds gives rise to an elaborate and rich structure including bordism, homology, and \assembly maps." The essential property holds in many constructs with a bordism fla- vor, so these all immediately receive versions of this rich structure. Not ev- erything works this way. In particular, while bundle-type theories (including algebraic K-theory) also have assembly maps and similar structures, they have them for somewhat di®erent reasons. One key idea is the use of spaces instead of sequences of groups to orga- nize invariants and obstructions. I ¯rst saw this idea in 1968 lecture notes by Colin Rourke on Dennis Sullivan's work on the Hauptvermutung ([21]). The idea was expanded in my thesis [14] and article [15], where \assembly maps" were introduced to study the question of when PL maps are ho- motopic to block bundle projections. This question was ¯rst considered by Andrew Casson, in the special case of bundles over a sphere. The use of ob- struction spaces instead of groups was the major ingredient of the extension to more general base spaces. The space ideas were expanded in a di®erent direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting for generalized cohomology theories. -
Seismic Retrofitting of Existing RC Buildings
1 Seismic retrofitting of existing RC buildings: 2 a rational selection procedure based on Genetic Algorithms 3 Roberto Falcone 4 University of Salerno, Dept. of Civil Engineering, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy. 5 e-mail: [email protected] 6 Francesco Carrabs 7 University of Salerno, Dept. of Mathematics, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy. 8 e-mail: [email protected] 9 Raffaele Cerulli 10 University of Salerno, Dept. of Mathematics, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy. 11 e-mail: [email protected] 12 Carmine Lima 13 University of Salerno, Dept. of Civil Engineering, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy. 14 e-mail: [email protected] 15 Enzo Martinelli* 16 University of Salerno, Dept. of Civil Engineering, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy. 17 e-mail: [email protected] 18 19 20 *Corresponding author 1 Abstract 2 Reinforced Concrete (R.C.) structures built in the past decades in earthquake-prone regions do not generally 3 meet the seismic safety standards requested by the current codes. Therefore, they generally need to be 4 retrofitted with the aim to reduce their seismic vulnerability Within acceptably low levels. Although several 5 technical solutions are noWadays available on the market, the design of retrofitting interventions is mainly 6 based on the so-called “engineering judgment” and, hence, it is highly subjective in nature, yet being bound to 7 respecting strict code provisions. This paper proposes a rational procedure, based on the application of Genetic 8 Algorithms (GAs), intended at selecting the “cheapest” retrofitting solution among the technically feasible 9 ones. -
Only a Comparison with Einstein Will Do Interview with Andrew Ranicki About His Father Marcel Reich-Ranicki, by Uwe Wittstock (FOCUS, 19 March, 2012)
Only a comparison with Einstein will do Interview with Andrew Ranicki about his father Marcel Reich-Ranicki, by Uwe Wittstock (FOCUS, 19 March, 2012) We lived in Warsaw and I was 8 years old when my father asked me: "Which German writers do you know?" Not a typical question for a child in Poland. But since I could think, I had the many book spines on my father's shelves in front of my eyes, so I listed: "Goethe, Heine, Thomas Mann, Schiller, Anna Seghers ..." My father thought I had read the names on the books. But I didn't need to. Though it wasn't important, I only needed to close my eyes and saw them before me. And at meals he would tell me about the books in such an exciting way that I loved to listen and many of these stories have stuck with me. When my parents decided in 1958 to go to Germany and to send me to an English language school in Hamburg, my life became complicated. I was 9 years old and spoke neither German nor English. But my father had a similar experience 30 years earlier. His mother sent him at the age of 9 from Poland to Berlin, and he had to learn German in just a few months so he could go to school. I have the impression that he mastered the language and literature rather well. It turned out that my talents were not linguistic in nature, but mathe- matical. I fell in love with the world of geometry and still love it today. -
My Father, Marcel Reich-Ranicki
1 MY FATHER MARCEL REICH-RANICKI Andrew Ranicki http://www.maths.ed.ac.uk/~aar Edinburgh Jewish Literary Society 22nd March, 2015 2 Timeline 1920 { 1950 : Survival I 2nd June 1920. Born in W loc lawek, Poland as Marcel Reich. I 1929 { 1938. Berlin. I November 1938. Deported to Poland. I November 1940 { 3rd February 1943. Warsaw Ghetto. I 22nd July 1942. Marries Tosia (Teofila) Langnas. I 3rd February 1943 { 7th September 1944. Marcel and Tosia hidden by Polish family until liberation by the Red Army. I 1944 { 1949. Joins Polish Communist Party. Changes name to Marceli Ranicki. Works for the Polish government in Warsaw, Berlin and London. I 30th December 1948. Son Andrzej Aleksander (Andrew Alexander) born in London. 3 Timeline 1950 { 2013 : Literature I 1950{1958. Warsaw. German literature critic, editor and translator. I 1958. Moves from Poland to Germany. Changes name to Marcel Reich-Ranicki. I 1959{1973. Hamburg, at \Die Zeit". I 1973{2013. Frankfurt, at the \Frankfurter Allgemeine Zeitung". I 1988{2011. Own TV show \Literarisches Quartett". I 1999. Publication of autobiography \Mein Leben". I 29th April 2011. Tosia dies in Frankfurt. I 27th January 2012. Addresses Bundestag on the annual Remembrance Day for the Victims of Nazism. I 18th September 2013. Dies in Frankfurt. 4 Marcel's parents David Reich (1880-1942) and Helene Auerbach (1884-1942) 5 Marcel with sister Gerda, brother Aleksander and mother Helene in W loc lawek, 1928 I Portrait of Gerda Boehm (her married name) by cousin Frank Auerbach currently on show at the Scottish Gallery of Modern Art in Edinburgh.