Noncommutative Ring Theory Notes

Total Page:16

File Type:pdf, Size:1020Kb

Noncommutative Ring Theory Notes NONCOMMUTATIVE RING THEORY NOTES Contents 1. Notational Conventions & Definitions 1 1.1. Notation 1 1.2. Definitions 1 2. Introduction 1 3. Rings with d.c.c. 7 3.1. Finite Dimensional Algebras 12 4. Nil and Nilpotent Ideals 14 5. Quotient Rings 17 5.1. Ideals in Q(R) 25 6. Division Algebras 30 6.1. Brauer Groups 33 7. Gelfand-Kirillov dimension 38 1. Notational Conventions & Definitions In these notes, R always denotes a ring with 1, unless otherwise stated. 1.1. Notation. subset, proper subset, ideal, right/left ideal, right mod- ule, bimodule 1.2. Definitions. simple, semisimple, prime, semiprime, primitive, semiprim- itive, artinian, noetherian, nil, nilpotent, regular, dedekind-finite, es- sential, uniform, goldie 2. Introduction Definition 2.1. A right R-module, MR, is an abelian group under addition together with a map MR × R ! MR, written (m; r) 7! mr, such that the following hold, for all m; n 2 MR, and all r; s 2 R: (1) (m + n)r = mr + nr (2) m(r + s) = mr + ms (3) m(rs) = (mr)s (4) m · 1 = m 1 2 NONCOMMUTATIVE RING THEORY NOTES If the ring R is understood, we usually drop the subscript and just write M in place of MR. A subgroup N of MR is a submodule if NR ⊆ N. Moreover, if N is a submodule of M, then we can form the factor module M=N in the obvious way. As a set, we have M=N = f m + N j m 2 M g, and the action of R is given by (m + N)r = mr + N. We also have the concept of an R-module homomorphism, which is a map 0 ' : MR ! MR such that '(m+n) = '(m)+'(n), and '(mr) = '(m)r, for all m; n 2 MR; r 2 R. The image of a module under an R-module homomorphism is again an R-module, and all the usual isomorphism theorems are still true. Example 2.2. • A vector space is a module over a field. • R is naturally a right R-module, in which case the submodules of RR are exactly the right ideals of R. Exercise 2.3. Take any ring R and prove that the two-sided ideals of Mn(R) are of the form Mn(I), where I is a two-sided ideal of R. Show that the analogous statement for one-sided ideals is not true. Corollary 2.4. Mn(k) = fn×n matrices over the field kg, is a simple ring. Definition 2.5. A module MR is finitely generated if there are el- ements m1; : : : ; mn 2 M such that, given m 2 M, there are ele- ments r1; : : : ; rn 2 R with m = m1r1 + ··· mnrn. That is, MR = m1R + ::: + mnR. Example 2.6. R = k[x; y], the polynomial ring in two commuting variables over the field k. The ideal I = xR+yR is a finitely generated R-module. (generated by x and y). Remark 2.7. (1) If MR is finitely generated, and ' is an R-module homomor- phism, then '(MR) is also finitely generated (by the images of the generators). (2) A submodule of a finitely generated module needn't be finitely generated. For example, let V be an infinite dimensional vector space over a field K. Let R = f (v; α) j v 2 V; α 2 K g with operations (v; α) + (w; β) = (v + w; α + β) (v; α)(w; β) = (βv + αw; αβ): NONCOMMUTATIVE RING THEORY NOTES 3 R is a ring with identity (0; 1), (and hence finitely generated by (0; 1) as a right R-module). However, (V; 0) is an ideal (and thus a right R-submodule) which is not finitely generated. RR 0 R (3) ⊂ M2(R) is a ring, and I = is a right ideal 0 Q 0 0 which is not finitely generated. (because RQ is not finitely gen- erated). Definition 2.8. We say a module MR is noetherian if every submodule of MR is finitely generated. Similarly, we say a ring R is right noetherian if RR is a noetherian module. Theorem 2.9. The following are equivalent: (1) MR is noetherian (2) MR satisfies a.c.c. ( = ascending chain condition) on submod- ules: given any ascending chain M1 ⊆ M2 ⊆ M3 ⊆ · · · of submodules, there is an integer r such that Mr = Mr+1 = Mr+2 = ··· : (3) Any nonempty family of submodules of MR has a maximal ele- ment (with respect to inclusion). Proof. (1) ) (2) Suppose we have a chain of submodules M1 ⊆ M2 ⊆ · · · S Note that Mi is a submodule of M, which by hypothesis is finitely generated, by say fm1; : : : mtg. Since this set is finite, there must be S P some r for which all of the mi are in Mr. Thus Mi = miR ⊆ Mr. Hence Mr = Mr+1 = Mr+2 = ··· , and the chain stabilizes. (2) ) (3) Suppose F is a nonempty family of submodules of MR. Choose Mi 2 F. If Mi is maximal, we're done. Otherwise we can find M2 2 F with M1 ⊂ M2. If M2 is maximal, we're done. Otherwise we can find M3 2 F with M2 ⊂ M3. Since we're assuming (2), this process must terminate, at which point we've arrived at a maximal element of F. (3) ) (1) Let N be any submodule of MR, and set F = fall finitely generated submodules of Ng: Let N 0 be a maximal element of F. If N 0 = N we're done. Otherwise N 0 ( N, so we can find an element n 2 N n N 0. Then N 0 + nR is a finitely generated submodule of N which properly contains N 0, 0 contradicting our choice of N . 4 NONCOMMUTATIVE RING THEORY NOTES Definition 2.10. We say a module MR is artinian if it satisfies d.c.c (= descending chain condition) on submodules. That is, given any descending chain M1 ⊇ M2 ⊇ M3 ⊇ · · · of submodules, there is an integer r such that Mr = Mr+1 = Mr+2 = ··· : Example 2.11. (1) Any finite dimensional vector space Vk is an artinian k-module. (2) ZZ is noetherian, but not artinian. For example the chain 2Z) 22Z) 23Z) ··· doesn't terminate. (3) If RR is a commutative integral domain with d.c.c., then R is a field. (proof: Choose 0 6= a 2 R and consider the chain of ideals aR ⊇ a2R ⊇ a3R ··· which must stabilize. So anR = an+1R for some n. Then an = an+1r for some r 2 R, and since R is a domain, we can cancel an to get 1 = ar, so a is a unit.) (4) (Q=Z)Z has a Z-submodule n Zp1 = f g 2 Q=Z j p g = 0 for some n 2 N g; which is artinian, but not noetherian. The Z-submodules of n Zp1 are all of the form Zpn = f g 2 Q=Z j p g = 0 g, and we have a strictly increasing chain Zp ⊂ Zp2 ⊂ Zp3 ⊂ · · · Proposition 2.12. The following are equivalent for a right R-module M: (1) MR has d.c.c. on submodules. (2) Any nonempty family of submodules of MR has a minimal ele- ment (with respect to inclusion). Proof. Mimic the proof in the noetherian case. Proposition 2.13. Any homomorphic image of a noetherian (resp. artinian) R-module is noetherian (resp. artinian). The converse of this result is a useful type of induction for noetherian (resp. artinian) modules. Proposition 2.14. Let N be an R-submodule of M. If N and M=N are noetherian (resp. artinian) then M is noetherian (resp. artinian). NONCOMMUTATIVE RING THEORY NOTES 5 Proof. We will do the proof in the noetherian case. The artinian case is similar. Let M1 ⊆ M2 ⊆ · · · be an ascending chain of submodules of M. Then M1 \ N ⊆ M2 \ N ⊆ · · · is an ascending chain of submodules of N, and (M1 + N)=N ⊆ (M2 + N)=N ⊆ · · · is an ascending chain of submodules of M=N. Both of these chains stabilize, so choose r 2 N large enough so that Mr \ N = Mr+1 \ N = ··· and (Mr + N)=N = (Mr + N)=N = ··· : Then Mr+1 = Mr+1 \ (Mr+1 + N) = Mr+1 \ (Mr + N) = Mr + (Mr+1 \ N) = Mr + (Mr \ N) = Mr where the third equality follows from the modular law. Thus the chain stabilizes, so M is noetherian. Proposition 2.15. A finite direct sum of noetherian (resp. artinian) modules is again noetherian (resp. artinian) Proof. The proof is by induction on the number of modules. Suppose M1; ··· ;Mn are noetherian R-modules. We view Mn as a submodule ∼ of M1 ⊕ ::: ⊕ Mn in the usual way. Then (M1 ⊕ ::: ⊕ Mn)=Mn = M1 ⊕ ::: ⊕ Mn−1 is noetherian by induction. Now apply the previous proposition. Of course, the previous proposition is not true for infinite direct sums. Definition 2.16. A ring R is called right noetherian (resp. artinian) if RR is a noetherian (resp. artinian) R-module. Note that any homomorphic image of a right noetherian (resp. ar- tinian) ring is right noetherian (resp. artinian). Proposition 2.17. If R is right noetherian (resp. artinian), then any finitely generated right R-module is noetherian (resp. artinian). 6 NONCOMMUTATIVE RING THEORY NOTES Proof. Again, we will do the noetherian case only, as the artinian case is similar. Let M be a finitely generated R-module, generated by m1; ··· ; mn. If n = 1, then M = mR. Set I = f r 2 R j mr = 0 g. Then I is a right ideal of R, and we have an R-module isomor- ∼ phism M = RR=I.
Recommended publications
  • Quantum Groupoids Acting on Semiprime Algebras
    Hindawi Publishing Corporation Advances in Mathematical Physics Volume 2011, Article ID 546058, 9 pages doi:10.1155/2011/546058 Research Article Quantum Groupoids Acting on Semiprime Algebras Inesˆ Borges1 and Christian Lomp2 1 Instituto Superior De Contabilidade e Administrac¸ao˜ de Coimbra, Quinta Agr´ıcola-Bencanta, 3040-316 Coimbra, Portugal 2 Departamento de Matematica,´ Faculdade de Ciencias,ˆ Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal Correspondence should be addressed to Christian Lomp, [email protected] Received 30 March 2011; Accepted 5 June 2011 Academic Editor: Olaf Lechtenfeld Copyright q 2011 I. Borges and C. Lomp. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Following Linchenko and Montgomery’s arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime. 1. Introduction Group actions, Lie algebras acting as derivations and finite group gradings are typical examples of Hopf algebra actions which have been studied for many years. Several generali- zations of Hopf algebras have emerged in recent years, like weak Hopf algebras or quantum groupoids introduced by Bohm¨ et al. 1. The action of such objects on algebras, as given by ∗ quantum groupoids acting on C -algebras, 2 or weak Hopf algebras arising from Jones towers 3 are particularly interesting. New examples of weak Hopf algebras arose from double groupoids 4, which were also used to find new weak Hopf actions see 2.
    [Show full text]
  • Single Elements
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 47 (2006), No. 1, 275-288. Single Elements B. J. Gardner Gordon Mason Department of Mathematics, University of Tasmania Hobart, Tasmania, Australia Department of Mathematics & Statistics, University of New Brunswick Fredericton, N.B., Canada Abstract. In this paper we consider single elements in rings and near- rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0 or xb = 0. In seeking rings in which each element is single, we are led to consider 0-simple rings, a class which lies between division rings and simple rings. MSC 2000: 16U99 (primary), 16Y30 (secondary) Introduction If R is a (not necessarily unital) ring, an element s is called single if whenever asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who used it to obtain results in the representation theory of normed algebras. More recently the idea has been applied by Longstaff and Panaia to certain matrix algebras (see [9] and its bibliography) and they suggest it might be worthy of further study in other contexts. In seeking rings in which every element is single we are led to consider 0-simple rings, a class which lies between division rings and simple rings. In the final section we examine the situation in nearrings and obtain information about minimal N-subgroups of some centralizer nearrings. 1. Single elements in rings We begin with a slightly more general definition. If I is a one-sided ideal in a ring R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I.
    [Show full text]
  • Research Statement Robert Won
    Research Statement Robert Won My research interests are in noncommutative algebra, specifically noncommutative ring the- ory and noncommutative projective algebraic geometry. Throughout, let k denote an alge- braically closed field of characteristic 0. All rings will be k-algebras and all categories and equivalences will be k-linear. 1. Introduction Noncommutative rings arise naturally in many contexts. Given a commutative ring R and a nonabelian group G, the group ring R[G] is a noncommutative ring. The n × n matrices with entries in C, or more generally, the linear transformations of a vector space under composition form a noncommutative ring. Noncommutative rings also arise as differential operators. The ring of differential operators on k[t] generated by multiplication by t and differentiation by t is isomorphic to the first Weyl algebra, A1 := khx; yi=(xy − yx − 1), a celebrated noncommutative ring. From the perspective of physics, the Weyl algebra captures the fact that in quantum mechanics, the position and momentum operators do not commute. As noncommutative rings are a larger class of rings than commutative ones, not all of the same tools and techniques are available in the noncommutative setting. For example, localization is only well-behaved at certain subsets of noncommutative rings called Ore sets. Care must also be taken when working with other ring-theoretic properties. The left ideals of a ring need not be (two-sided) ideals. One must be careful in distinguishing between left ideals and right ideals, as well as left and right noetherianness or artianness. In commutative algebra, there is a rich interplay between ring theory and algebraic geom- etry.
    [Show full text]
  • Change of Rings Theorems
    CHANG E OF RINGS THEOREMS CHANGE OF RINGS THEOREMS By PHILIP MURRAY ROBINSON, B.SC. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University (July) 1971 MASTER OF SCIENCE (1971) l'v1cHASTER UNIVERSITY {Mathematics) Hamilton, Ontario TITLE: Change of Rings Theorems AUTHOR: Philip Murray Robinson, B.Sc. (Carleton University) SUPERVISOR: Professor B.J.Mueller NUMBER OF PAGES: v, 38 SCOPE AND CONTENTS: The intention of this thesis is to gather together the results of various papers concerning the three change of rings theorems, generalizing them where possible, and to determine if the various results, although under different hypotheses, are in fact, distinct. {ii) PREFACE Classically, there exist three theorems which relate the two homological dimensions of a module over two rings. We deal with the first and last of these theorems. J. R. Strecker and L. W. Small have significantly generalized the "Third Change of Rings Theorem" and we have simply re­ organized their results as Chapter 2. J. M. Cohen and C. u. Jensen have generalized the "First Change of Rings Theorem", each with hypotheses seemingly distinct from the other. However, as Chapter 3 we show that by developing new proofs for their theorems we can, indeed, generalize their results and by so doing show that their hypotheses coincide. Some examples due to Small and Cohen make up Chapter 4 as a completion to the work. (iii) ACKNOW-EDGMENTS The author expresses his sincere appreciation to his supervisor, Dr. B. J. Mueller, whose guidance and helpful criticisms were of greatest value in the preparation of this thesis.
    [Show full text]
  • The Structure of Certain Artinian Rings with Zero Singular Ideal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 8, 156-164 (1968) The Structure of Certain Artinian Rings with Zero Singular Ideal R. R. COLBY AND EDGAR A. RUTTER, JR. The University of Kansas, Lawrence, Kansas 66044 Communicated by A. W. Goldie Received March 4, 1967 INTRODUCTION Let R be a ring with identity and M and N (left) R-modules with MC N. Then M is said to be essential in N if M intersects every nonzero submodule of N nontrivially. A left ideal I of R is called an essential left ideal if I is essential in R. We denote the singular submodule of N by Z(N); 2(N)={n~NIhz=(O)f or some essential left ideal I of R}. We shall assume throughout this paper that Z(R) = 0. In Section 1 we outline the construction of Johnson’s ring of quotients [3] and some of its properties and develop certain other preliminary results. In Section 2 we determine the structure of Artinian rings with zero singular ideal having the property that each principal indecomposable left ideal contains a unique minimal left ideal. In particular we show that if R is such a ring then R is a certain distinguished subring of a complete blocked triangular matrix ring over a division subring of R. We also consider the case where R is a left generalized uniserial ring and generalize results of A. W. Goldie [2] and I. Murase [.5& Finally we apply the methods to obtain the structure of finite-dimensional algebras with zero singular ideal.
    [Show full text]
  • ON FULLY IDEMPOTENT RINGS 1. Introduction Throughout This Note
    Bull. Korean Math. Soc. 47 (2010), No. 4, pp. 715–726 DOI 10.4134/BKMS.2010.47.4.715 ON FULLY IDEMPOTENT RINGS Young Cheol Jeon, Nam Kyun Kim, and Yang Lee Abstract. We continue the study of fully idempotent rings initiated by Courter. It is shown that a (semi)prime ring, but not fully idempotent, can be always constructed from any (semi)prime ring. It is shown that the full idempotence is both Morita invariant and a hereditary radical property, obtaining hs(Matn(R)) = Matn(hs(R)) for any ring R where hs(−) means the sum of all fully idempotent ideals. A non-semiprimitive fully idempotent ring with identity is constructed from the Smoktunow- icz’s simple nil ring. It is proved that the full idempotence is preserved by the classical quotient rings. More properties of fully idempotent rings are examined and necessary examples are found or constructed in the process. 1. Introduction Throughout this note each ring is associative with identity unless stated otherwise. Given a ring R, denote the n by n full (resp. upper triangular) matrix ring over R by Matn(R) (resp. Un(R)). Use Eij for the matrix with (i, j)-entry 1 and elsewhere 0. Z denotes the ring of integers. A ring (possibly without identity) is called reduced if it has no nonzero nilpotent elements. A ring (possibly without identity) is called semiprime if the prime radical is zero. Reduced rings are clearly semiprime and note that a commutative ring is semiprime if and only if it is reduced. The study of fully idempotent rings was initiated by Courter [2].
    [Show full text]
  • Lie Algebras and Representation Theory Course Description
    ALGEBRAIC STRUCTURES: A SECOND YEAR ALGEBRA SEQUENCE JULIA PEVTSOVA AND PAUL SMITH 1. 1st quarter: Lie algebras and Representation theory Course description. This course will cover the foundations of semi-simple Lie algebras, and their representation theory. It will also lay foundations for any further study of representation theory, Lie theory, and many other related topics. We shall discuss the structure of concrete examples of classical Lie algebras such as gln, sln, spn and son. This will be followed by the general theory of universal enveloping algebras and PBW theorem. The abstract theory of root systems and weight lattices that we shall develop will allow us to classify semi-simple Lie algebras. The second part of the course will be devoted to representations of Lie algebras and the theory of weights. Most of the theory will be developed over the complex numbers. Additional topics to discuss, time permitting, will be real Lie algebras and Lie algebra coho- mology. Topics at a glance. (1) Definitions and examples (2) Universal enveloping algebra and PBW theorem (3) Solvable and nilpotent Lie algebras (4) Root systems (5) Classification of semi-simple Lie algebras (6) Serre relations (7) Representation theory: (a) Highest weight modules (b) Finite dimensional irreducible modules, Dominant weights (c) Weyl character formula (8) Chevalley basis Reference. J. Humphreys, “Introduction to Lie algebras and Representation the- ory”. 1 2 JULIAPEVTSOVAANDPAULSMITH 2. 2nd quarter: Non-commutative Algebras Course description. This course will cover the foundations of finite- and infinite- dimensional associative algebras. The basic finite-dimensional examples will be the group algebra of a finite group, and the path algebra of appropriate quivers with relations.
    [Show full text]
  • QUIVER BIALGEBRAS and MONOIDAL CATEGORIES 3 K N ≥ 0
    QUIVER BIALGEBRAS AND MONOIDAL CATEGORIES HUA-LIN HUANG (JINAN) AND BLAS TORRECILLAS (ALMER´IA) Abstract. We study the bialgebra structures on quiver coalgebras and the monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories. 1. Introduction This paper is devoted to the study of natural bialgebra structures on the path coalgebra of an arbitrary quiver and monoidal structures on the category of its locally nilpotent and locally finite representations. A further purpose is to establish a quiver setting for general pointed bialgebras and pointed monoidal categories. Our original motivation is to extend the Hopf quiver theory [4, 7, 8, 12, 13, 25, 31] to the setting of generalized Hopf structures. As bialgebras are a fundamental generalization of Hopf algebras, we naturally initiate our study from this case. The basic problem is to determine what kind of quivers can give rise to bialgebra structures on their associated path algebras or coalgebras. It turns out that the path coalgebra of an arbitrary quiver admits natural bial- gebra structures, see Theorem 3.2. This seems a bit surprising at first sight by comparison with the Hopf case given in [8], where Cibils and Rosso showed that the path coalgebra of a quiver Q admits a Hopf algebra structure if and only if Q is a Hopf quiver which is very special.
    [Show full text]
  • Gauging the Octonion Algebra
    UM-P-92/60_» Gauging the octonion algebra A.K. Waldron and G.C. Joshi Research Centre for High Energy Physics, University of Melbourne, Parkville, Victoria 8052, Australia By considering representation theory for non-associative algebras we construct the fundamental and adjoint representations of the octonion algebra. We then show how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. We find that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. PACS numbers: 11.30.Ly, 12.10.Dm, 12.40.-y. Typeset Using REVTEX 1 L INTRODUCTION The aim of this work is to genuinely gauge the octonion algebra as opposed to relating properties of this algebra back to the well known theory of Lie Groups and fibre bundles. Typically most attempts to utilise the octonion symmetry in physics have revolved around considerations of the automorphism group G2 of the octonions and Jordan matrix representations of the octonions [1]. Our approach is more simple since we provide a spinorial approach to the octonion symmetry. Previous to this work there were already several indications that this should be possible. To begin with the statement of the gauge principle itself uno theory shall depend on the labelling of the internal symmetry space coordinates" seems to be independent of the exact nature of the gauge algebra and so should apply equally to non-associative algebras. The octonion algebra is an alternative algebra (the associator {x-1,y,i} = 0 always) X -1 so that the transformation law for a gauge field TM —• T^, = UY^U~ — ^(c^C/)(/ is well defined for octonionic transformations U.
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Classifying the Representation Type of Infinitesimal Blocks of Category
    Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt (Under the Direction of Brian D. Boe) Abstract Let g be a simple Lie algebra over the field C of complex numbers, with root system Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots ∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight ∗ µ µ ∈ h , with singular set J ⊆ ∆. We determine when an infinitesimal block O(g,S,J) := OS of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work of Futorny-Nakano-Pollack, Br¨ustle-K¨onig-Mazorchuk, and Boe-Nakano toward classifying the representation type of the nonzero infinitesimal blocks of category OS by considering arbitrary sets S and J, and observe a strong connection between the theory of nilpotent orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal blocks of category OS including all the semisimple infinitesimal blocks in type An, and all of the infinitesimal blocks for F4 and G2. Index words: Category O; Representation type; Verma modules Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt B.A., Utah State University, 1999 M.S., Utah State University, 2001 M.A, The University of Georgia, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Athens, Georgia 2008 c 2008 Kenyon J. Platt All Rights Reserved Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J.
    [Show full text]