Noncommutative Localization in Noncommutative Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Noncommutative Localization in Algebra and Topology
Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol. -
Almost Ring Theory Series: Lecture Notes in Mathematics
springer.com Ofer Gabber, Lorenzo Ramero Almost Ring Theory Series: Lecture Notes in Mathematics This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that ofan "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras. 2003, VI, 318 p. Printed book Softcover 59,99 € | £54.99 | $74.99 [1]64,19 € (D) | 65,99 € (A) | CHF 71,00 eBook 50,28 € | £43.99 | $59.99 [2]50,28 € (D) | 50,28 € (A) | CHF 56,50 Available from your library or springer.com/shop MyCopy [3] Printed eBook for just € | $ 24.99 springer.com/mycopy Order online at springer.com / or for the Americas call (toll free) 1-800-SPRINGER / or email us at: [email protected]. / For outside the Americas call +49 (0) 6221-345-4301 / or email us at: [email protected]. -
A Generalization of the Field of Fractions of an Integral Domain
MICIIAUI), ROBERT EUGENE. A Generalization oi the Field of Fractions of an Integral Domain. (1970) Directed by: Dr. E. E. Posey pp. 21 I ii this paper the author deals with < he problem of construct- ing the field of fractions of an integral domain and a general i'. of one of the methods of construction used to construct a ring oi left quotients for an arbitrary ring. In this generalization thi author relies heavily upon the concept of a faithful complete Eilter and defines partial endomorphisms from the filter el erne into the ring. After partitioning these partial endomorphisms Lnti equivalence classes and after defining operations on the equlvalei classes the author then shows that the resultant structure Is I ring of left quotients. In addition to showing that a faithful complete filter assures the existence of a ring of left quotients the author shows that these rings of left quotients can be embedded in the Utumi ring oJ left quotients. The paper concludes with theorems showing necessary and Hiifflclfiil conditions for the classical ring oi left quotient! ,., fin}! i; to exist .in.l .i theorem establishing the uniqueness up to Isomorphism of the classical ring of left quotients oi a ri R. A GENERALIZATION OF THE FIELD OF FRACTIONS OF AN INTEGRAL DOMAIN by Robert Eugene Michaud A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Master of Arts Greensboro August, 1970 Approved by APPROVAL SHEET This thesis has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro. -
Arxiv:1803.03229V2 [Math.AC] 8 Sep 2018 N H Perfection, the and Aia Fr(O Xml,Rcudb -Dclycmlt) T R Map Complete)
REGULAR RINGS AND PERFECT(OID) ALGEBRAS BHARGAV BHATT, SRIKANTH B. IYENGAR, AND LINQUAN MA Happy Birthday Gennady! ABSTRACT. We prove a p-adic analog of Kunz’s theorem: a p-adically complete noether- ian ring is regular exactly when it admits a faithfully flat map to a perfectoid ring. This result is deduced from a more precise statement on detecting finiteness of projective di- mension of finitely generated modules over noetherian rings via maps to perfectoid rings. We also establish a version of the p-adic Kunz’s theorem where the flatness hypothesis is relaxed to almost flatness. 1. INTRODUCTION This paper explores some homological properties of perfect(oid) algebras over commu- tative noetherian rings. A commutative ring of positive characteristic p is called perfect if its Frobenius endomorphism is an isomorphism. Perfectoid rings are generalizations of perfect rings to mixed characteristic (Definition 3.5). Their most important features for our work are: if A is a perfectoid ring, then √pA is a flat ideal, A/√pA is a perfect ring, and finitely generated radical ideals in A containing p have finite flat dimension (Lemma 3.7). One of our main results is that over a noetherian local ring R, any perfectoid R-algebra A with mA = A detects finiteness of homological dimension of R-modules. More precisely, 6 R given such an A, if a finitely generated R-module M satisfies Tor j (A,M)= 0 for j 0, then M has a finite free resolution by R-modules (Theorem 4.1). The crucial property≫ of A that is responsible for this phenomenon is isolated in Theorem 2.1, which identifies a large class of modules that can detect finiteness of homological dimension over local rings. -
The Perfectoid Concept: Test Case for an Absent Theory
The Perfectoid Concept: Test Case for an Absent Theory MICHAEL HARRIS Department of Mathematics Columbia University Perfectoid prologue It's not often that contemporary mathematics provides such a clear-cut example of concept formation as the one I am about to present: Peter Scholze's introduction of the new notion of perfectoid space. The 23-year old Scholze first unveiled the concept in the spring of 2011 in a conference talk at the Institute for Advanced Study in Princeton. I know because I was there. This was soon followed by an extended visit to the Institut des Hautes Études Scientifiques (IHES) at Bûres- sur-Yvette, outside Paris — I was there too. Scholze's six-lecture series culminated with a spectacular application of the new method, already announced in Princeton, to an outstanding problem left over from the days when the IHES was the destination of pilgrims come to hear Alexander Grothendieck, and later Pierre Deligne, report on the creation of the new geometries of their day. Scholze's exceptionally clear lecture notes were read in mathematics departments around the world within days of his lecture — not passed hand-to-hand as in Grothendieck's day — and the videos of his talks were immediately made available on the IHES website. Meanwhile, more killer apps followed in rapid succession in a series of papers written by Scholze, sometimes in collaboration with other mathematicians under 30 (or just slightly older), often alone. By the time he reached the age of 24, high-level conference invitations to talk about the uses of perfectoid spaces (I was at a number of those too) had enshrined Scholze as one of the youngest elder statesmen ever of arithmetic geometry, the branch of mathematics where number theory meets algebraic geometry.) Two years later, a week-long meeting in 2014 on Perfectoid Spaces and Their Applications at the Mathematical Sciences Research Institute in Berkeley broke all attendance records for "Hot Topics" conferences. -
INJECTIVE MODULES OVER a PRTNCIPAL LEFT and RIGHT IDEAL DOMAIN, \Ryith APPLICATIONS
INJECTIVE MODULES OVER A PRTNCIPAL LEFT AND RIGHT IDEAL DOMAIN, \ryITH APPLICATIONS By Alina N. Duca SUBMITTED IN PARTTAL FULFILLMENT OF THE REQUIREMENTS FOR TI{E DEGREE OF DOCTOR OFPHILOSOPHY AT UMVERSITY OF MAMTOBA WINNIPEG, MANITOBA April 3,2007 @ Copyright by Alina N. Duca, 2007 THE T.TNIVERSITY OF MANITOBA FACULTY OF GRADUATE STI]DIES ***** COPYRIGHT PERMISSION INJECTIVE MODULES OVER A PRINCIPAL LEFT AND RIGHT IDEAL DOMAIN, WITH APPLICATIONS BY Alina N. Duca A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfïllment of the requirement of the degree DOCTOR OF PHILOSOPHY Alina N. Duca @ 2007 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesidpracticum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University MicrofïIms Inc. to pubtish an abstract of this thesiVpracticum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. UNIVERSITY OF MANITOBA DEPARTMENT OF MATIIEMATICS The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "Injective Modules over a Principal Left and Right ldeal Domain, with Applications" by Alina N. Duca in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dated: April3.2007 External Examiner: K.R.Goodearl Research Supervisor: T.G.Kucera Examining Committee: G.Krause Examining Committee: W.Kocay T]NTVERSITY OF MANITOBA Date: April3,2007 Author: Alina N. -
Faithfully Flat Descent of Almost Perfect Complexes in Rigid Geometry
FAITHFULLY FLAT DESCENT OF ALMOST PERFECT COMPLEXES IN RIGID GEOMETRY AKHIL MATHEW Abstract. We prove a version of faithfully flat descent in rigid analytic geometry, for almost perfect complexes and without finiteness assumptions on the rings involved. This extends results of Drinfeld for vector bundles. 1. Introduction We begin with the statement of faithfully flat descent in rigid analytic geometry. Let K be a complete nonarchimedean field, and let A → A′ be a faithfully flat map of K-affinoid algebras. In ordinary algebra, faithfully flat descent [2, Exp. VIII] states that the category of A-modules can be described as the category of A′-modules with descent data, which take place over the tensor ′ ′ ′ ′ ′ products A ⊗A A , A ⊗A A ⊗A A . In rigid geometry, one obtains a similar conclusion, but with the tensor products replaced with completed tensor products and only for finitely generated modules. Given a K-affinoid algebra B, we recall that B is noetherian, and we let Coh(B) denote the category of finitely generated B-modules. One has the following result, due to Bosch-G¨ortz [13]; the discretely valued case was previously known to Gabber (cf. [34, Theorem 1.9]). See also [15] and [3, Sec. 5.11] for accounts. Theorem 1.1 (Bosch–G¨ortz–Gabber). Let A → A′ be a faithfully flat map of K-affinoid algebras. We have an equivalence of categories → Coh(A) ≃ lim Coh(A′) ⇒ Coh(A′⊗ˆ A′) → ... ←− A → In other words, to specify a finitely generated A-module is equivalent to specifying a finitely generated ′ ′ ′ ′ ′ ′ A -module with descent data over the completed tensor products A ⊗ˆ AA , A ⊗ˆ AA ⊗ˆ AA . -
Almost Ring Theory
springer.com Mathematics : Algebra Gabber, Ofer, Ramero, Lorenzo Almost Ring Theory This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that ofan "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras. Order online at springer.com/booksellers Springer Springer Nature Customer Service Center GmbH 2003, VI, 318 p. Customer Service 1st Tiergartenstrasse 15-17 edition 69121 Heidelberg Germany T: +49 (0)6221 345-4301 Printed book [email protected] Softcover Printed book Softcover ISBN 978-3-540-40594-8 £ 54,99 | CHF 71,00 | 59,99 € | 65,99 € (A) | 64,19 € (D) Available Discount group Science (SC) Product category Monograph Series Lecture Notes in Mathematics Prices and other details are subject to change without notice. All errors and omissions excepted. Americas: Tax will be added where applicable. Canadian residents please add PST, QST or GST. -
Quotient Rings of Noetherian Module Finite Rings
proceedings of the american mathematical society Volume 121, Number 2, June 1994 QUOTIENT RINGS OF NOETHERIAN MODULE FINITE RINGS A. W. CHATTERS AND C. R. HAJARNAVIS (Communicated by Lance W. Small) Abstract. Let R be a Noetherian ring which is a finite module over its centre C . We obtain a necessary and sufficient condition for R to have a full quotient ring. We also show that when such a quotient ring does exist, it is obtained by inverting those elements of C which are regular in R . 1. Introduction The problem of deciding when a Noetherian ring possesses a classical ring of quotients was posed by Goldie [4]. Apart from the general characterisation given by Ore's theorem, this question is still open. The most significant result in this area so far has been that of Stafford [13], who obtained a criterion to determine when a Noetherian ring is its own quotient ring. Stafford also comments [13, p. 385] on the difficulty in tackling the more general problem of finding necessary and sufficient conditions for a Noetherian ring to have a full ring of quotients, pointing out that this question is intimately connected with that of localising at a prime ideal where an easy characterisation is unlikely. In this article we restrict our attention to those Noetherian rings which are finitely generated as modules over their centres. This class is a rich source of examples both with and without quotient rings [2, 11]. Here the obstruction mentioned above does not apply since in this case an easy criterion given by Müller [10] to determine the localisibility of a prime ideal does exist. -
The Torsion Theory at a Prime Ideal of a Right Noetherian Ring
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 25, 364-389 (1973) The Torsion Theory at a Prime Ideal of a Right Noetherian Ring JOACHIM LAMBEK AND GERHARD MICHLER Department of Mathematics, McGill University, Montreal 2, Quebec, Canada Received May 24, 1971 I. INTRODUCTION Let P be any two-sided prime ideal of the right Noetherian ring R. One is interested in associating with P a ring of quotients Rp which reduces to the usual localization of R at P when R is commutative. According to Gabriel [3], it suffices to associate with P an idempotent filter of right ideals, but in place of this we prefer to speak of the corresponding torsion theory 9’. There are two obvious candidates for 9: (1) The torsion theory q determined by the injective hull E,(R/P) of the right R-module R/P, a module T being torsion if hom,( T, E,(R/P)) = 0. (2) The torsion theory Ya determined by the filter of all right ideals D of R such that Y-ID n V(P) # o for all Y E R, where g(P) is the set of all c E R for which cx E P implies x E P; a module T being torsion if t-l0 = {Y E R 1 tr = 0} is in the filter for each 2 E T. It is one purpose of this paper to show that Yi = Ya (Corollary 3.10). We shall call this the torsion theory at the prime ideal P, or simply the P-torsion theory. -
Almost Cohen-Macaulay and Almost Regular Algebras Via Almost Flat Extensions3
ALMOST COHEN-MACAULAY AND ALMOST REGULAR ALGEBRAS VIA ALMOST FLAT EXTENSIONS MOHSEN ASGHARZADEH AND KAZUMA SHIMOMOTO Abstract. The present paper deals with various aspects of the notion of almost Cohen- Macaulay property, which was introduced and studied by Roberts, Singh and Srinivas. For example, we prove that, if the local cohomology modules of an algebra T of certain type over a local Noetherian ring are almost zero, T maps to a big Cohen-Macaulay algebra. 1. Introduction Let (R, m) bea d-dimensional Noetherian local ring with a system of parameters x := x ,...,x . Hochster’s Monomial Conjecture states that xt xt / (xt+1,...,xt+1) for all 1 d 1 · · · d ∈ 1 d t 0. The Monomial Conjecture is known to hold for all equi-characteristic local rings ≥ and for all local rings of dimension at most three. A recent proof of this conjecture in dimension three due to Heitmann has opened a new approach to the study of homological conjectures in mixed characteristic and this approach is a sample of Almost Ring Theory. We recommend the reader to [9] for a systematic study of almost ring theory. Let R+ denote the integral closure of a domain R in an algebraic closure of the fraction field of R. Using extraordinarily difficult methods, it was recently proved by Heitmann [12], that R+ is almost Cohen-Macaulay for a complete local domain R of mixed characteristic in dimension three. Let T be an R-algebra equipped with a value map v (this term together with its normalized version is explained below, but we warn the reader that the value map is defined on algebras which are not necessarily integral domains). -
Arxiv:Math/0201175V3
ALMOST RING THEORY OFER GABBER AND LORENZO RAMERO sixth (and final) release Ofer Gabber I.H.E.S. Le Bois-Marie 35, route de Chartres F-91440 Bures-sur-Yvette e-mail address: [email protected] Lorenzo Ramero Universit´ede Bordeaux I Laboratoire de Math´ematiques 351, cours de la Liberation F-33405 Talence Cedex e-mail address: [email protected] web page: http://www.math.u-bordeaux.fr/ ramero ∼ arXiv:math/0201175v3 [math.AG] 22 Jul 2002 1 2 OFERGABBERANDLORENZORAMERO CONTENTS 1. Introduction 3 2. Homological theory 7 2.1. Some ring-theoretic preliminaries 7 2.2. Categoriesofalmostmodulesandalgebras 11 2.3. Uniform spaces of almost modules 16 2.4. Almost homological algebra 22 2.5. Almost homotopical algebra 29 3. Almost ring theory 38 3.1. Flat, unramified and ´etale morphisms 39 3.2. Nilpotent deformations of almost algebras and modules 41 3.3. Nilpotent deformations of torsors 47 3.4. Descent 55 3.5. Behaviourof´etalemorphismsunderFrobenius 64 4. Fine study of almost projective modules 72 4.1. Almost traces 72 4.2. Endomorphisms of Gm. 78 4.3. Modules of almost finite rank 83 4.4. Localisation in the flatb site 88 4.5. Construction of quotients by flat equivalence relations 96 5. Henselizationandcompletionofalmostalgebras 102 5.1. Henselian pairs 103 5.2. Criteria for unramified morphisms 106 5.3. Topological algebras and modules 111 5.4. Henselian approximation of structures over adically completerings 116 5.5. Lifting theorems for henselian pairs 127 5.6. Smooth locus of an affine almost scheme 134 5.7. Quasi-projective almost schemes 141 5.8.