Drumlins in North Dakota Lee A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distinguishing Outewash, Ablation Till and Basal Till
DISTINGUISHING OUTWASH, ABLATION TILL, AND BASAL TILL WITHIN THE SRSNE SITE POTENTIAL OVERBURDEN NAPL ZONE Purpose and Background The purpose of distinguishing between outwash, ablation till, and basal till is to help understand the migration pathways and general distribution of NAPL in the overburden at the SRSNE Site. NAPLs at the site have densities that range from less dense than water (LNAPL) to denser than water (DNAPL). The LNAPL density has not been measured. The DNAPL densities have been measured as between 1.1 and 1.2 g/ml. The NAPLs all have viscosity similar to that of water, and low interfacial tension. The outwash contains stratification that would be expected to promote lateral spreading of NAPLs, but it is not believed to contain laterally extensive capillary barriers that would preclude downward movement of dense NAPLs (DNAPLs). In addition, outwash typically contains isolated layers, lenses, and "shoestrings" of well-sorted, sand and or gravel where NAPL may have preferentially migrated. It is believed that relatively coarse-grained, linear features, where present, are relict stream channels, generally oriented north-south, parallel to the Quinnipiac River valley. Ablation till contains a significant component of fines (typically silt but also occasional clay), and it can be significantly denser than outwash. Typically outwash has split-spoon blow counts of <10 per 6 inches; ablation till commonly has blow counts >30 per 6 inches. According to TtNUS, till with noteworthy layering or stratification is considered ablation till. BBL interprets that ablation till is generally an effective capillary barrier that would resist or prevent downward NAPL movement (except where compromised by drilling). -
1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page
1 Recognising glacial features. Examine the illustrations of glacial landforms that are shown on this C page and on the next page. In Column 1 of the grid provided write the names of the glacial D features that are labelled A–L. In Column 2 indicate whether B each feature is formed by glacial erosion of by glacial deposition. A In Column 3 indicate whether G each feature is more likely to be found in an upland or in a lowland area. E F 1 H K J 2 I 24 Chapter 6 L direction of boulder clay ice flow 3 Column 1 Column 2 Column 3 A Arête Erosion Upland B Tarn (cirque with tarn) Erosion Upland C Pyramidal peak Erosion Upland D Cirque Erosion Upland E Ribbon lake Erosion Upland F Glaciated valley Erosion Upland G Hanging valley Erosion Upland H Lateral moraine Deposition Lowland (upland also accepted) I Frontal moraine Deposition Lowland (upland also accepted) J Medial moraine Deposition Lowland (upland also accepted) K Fjord Erosion Upland L Drumlin Deposition Lowland 2 In the boxes provided, match each letter in Column X with the number of its pair in Column Y. One pair has been completed for you. COLUMN X COLUMN Y A Corrie 1 Narrow ridge between two corries A 4 B Arête 2 Glaciated valley overhanging main valley B 1 C Fjord 3 Hollow on valley floor scooped out by ice C 5 D Hanging valley 4 Steep-sided hollow sometimes containing a lake D 2 E Ribbon lake 5 Glaciated valley drowned by rising sea levels E 3 25 New Complete Geography Skills Book 3 (a) Landform of glacial erosion Name one feature of glacial erosion and with the aid of a diagram explain how it was formed. -
Mid Miocene – Early Pliocene Depositional Environment on the Northern Part of the Mid- Norwegian Continental Shelf
Faculty of Science & Technology Department of Geology Mid Miocene – Early Pliocene depositional environment on the northern part of the Mid- Norwegian Continental Shelf Bendik Skjevik Blakstad Master thesis in Geology, GEO-3900 May 2016 Abstract Based on the study of 2D seismic data, this thesis have focused on the depositional environment during the deposition of the Kai formation (Mid-Miocene – Early Pliocene) on the Mid-Norwegian continental margin, in order to increase our knowledge of the evolution of the paleo-environment in the time-period right before the development of the large Northern Hemisphere ice sheets. Based on a seismic stratigraphic analysis, correlated to selected well logs, the deposits comprising the Kai formation were divided into seismic sub-units. The stratigraphy of the formation and the sub-units, as well as the geometry of multiple paleo-sea- floor surfaces have been described and discussed in relation to the development of the ocean circulation pattern in the Norwegian Sea during this time. The study area were subdivided into an inner- (Trøndelag Platform) and outer (Vøring Basin) part of the continental shelf. The Kai formation is dominated ooze sediments in the deeper basins, and mainly clayey sediments on the inner shelf. Multiple anticlinal highs and structures can be observed within the study area. Based on observations near the flanks of these highs, it is evident that the highs have played a larger role in the distribution and flow pattern of ocean currents under the deposition of the Kai formation. The largest high is the Helland-Hansen Arch, which separates the Kai formation on the inner and outer shelf by an area of non-deposition, located on top of the arch. -
Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________ -
Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area. -
A Brief History of Till Research and Developing Nomenclature
k 7 2 A Brief History of Till Research and Developing Nomenclature With relief one remembers that, after all, the facts gathered with such infinite care, over so many years, are in no ways affected: their permanency is untouched, their value as high as ever. It is the interpretation which has gone astray. Carruthers (1953, p. 36) A benchmark publication in the development of till nomenclature was contained in the final report by the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits, entitled ‘Genetic Classification of Glacigenic Deposits’ (Goldthwait and Matsch, 1989; Figure 2.1). Most significant in this report was the paper by Aleksis Dreimanis (Figure 2.2), entitled ‘Tills: Their Genetic Terminology k k and Classification’, a summary of the findings of the Till Work Group, which operated over the period 1974–1986. It was a synthesis of knowledge and a rationale for a unified process-based nomenclature but at the same time afforded the presentation of alternative standpoints on till classification, and hence delivered a selection of frameworks containing complex and overlapping genetic terms. More broadly, ‘till’ at this juncture was defined as: a sediment that has been transported and is subsequently deposited by or from glacier ice, with little or no sorting by water. (Dreimanis and Lundqvist, 1984, p. 9) As a way forward, the Till Work Group, through Dreimanis (1989), arrived at a series of nomencla- ture diagrams (Figure 2.3), which aimed at an inclusive but at the same time simplified and unambigu- ous, process-based till classification scheme. More specifically, Dreimanis (1989), within the same volume, compiled a table of diagnostic characteristics for differentiating what he termed ‘lodgement till’, ‘melt-out till’ and ‘gravity flowtill’. -
The Dynamics of Glacial Till Erosion: Hydraulic Flume Tests on Samples from Medway Creek, London, ON
The dynamics of glacial till erosion: hydraulic flume tests on samples from Medway Creek, London, ON Leila Pike Thesis Department of Civil Engineering and Applied Mechanics McGill University, Montreal December, 2014 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Civil Engineering. © Leila Pike 2014 Abstract The erosion of till material from the river bank of Medway Creek in London, Ontario was studied to determine the erosion mechanisms and critical shear stress of the till, and to understand how the alluvial cover, particularly the gravel particles, impacts the erosion process. Samples were collected from Medway Creek and were tested under a unidirectional current in a hydraulic flume at McGill University under a unidirectional current. Samples were tested under three separate sets of conditions: samples at their natural moisture content in clear flow conditions, air-dried samples in clear flow conditions, and samples at their natural moisture content with large gravel particles present in the flume. The two latter tests were performed to determine any effects that weathering and the presence of alluvial material may have in the erosion process. The results show that mass erosion was the dominant form of erosion, occurring around natural planes of weakness and irregularities, such as gravel particles, within the material. The critical shear stress was observed to be approximately 8 Pa. The effect of drying on the erosion process was extreme – the critical shear stress dropped to below 1 Pa and the structure of the cohesive material disintegrated. The presence of gravel particles led to increased surface erosion due to impacts and a more rapid progression of the erosion. -
Crag-And-Tail Features on the Amundsen Sea Continental Shelf, West Antarctica
Downloaded from http://mem.lyellcollection.org/ by guest on November 30, 2016 Crag-and-tail features on the Amundsen Sea continental shelf, West Antarctica F. O. NITSCHE1*, R. D. LARTER2, K. GOHL3, A. G. C. GRAHAM4 & G. KUHN3 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany 4College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK *Corresponding author (e-mail: [email protected]) On parts of glaciated continental margins, especially the inner leads to its characteristic tapering and allows formation of the sec- shelves around Antarctica, grounded ice has removed pre-existing ondary features. Multiple, elongated ridges in the tail could be sedimentary cover, leaving subglacial bedforms on eroded sub- related to the unevenness of the top of the ‘crags’. Secondary, strates (Anderson et al. 2001; Wellner et al. 2001). While the smaller crag-and-tail features might reflect variations in the under- dominant subglacial bedforms often follow a distinct, relatively lying substrate or ice-flow dynamics. uniform pattern that can be related to overall trends in palaeo- While the length-to-width ratio of crag-and-tail features in this ice flow and substrate geology (Wellner et al. 2006), others are case is much lower than for drumlins or elongate lineations, the more randomly distributed and may reflect local substrate varia- boundary between feature classes is indistinct. -
Glacial Tills Sedimentary Vs. Genetic Terms
11/5/09 Glacial Deposition: We now know…. • Why a glacier exists (mass Glacial Tills balance) • How it flows • How it abrades and erodes • How it entrains debris • So, now how is basal debris deposited – How is it classified, how is it related to types of landforms, spatial extent. Till Prism -- conceptual framework Sedimentary vs. genetic terms diversity of depositional modes and structure Waterlain • Till = a sediment that • Diamict (diamicton)= tills a sediment composed has been transported and deposited by or Deformation of a wide range of Resedimented clast sizes; includes from glacier ice with little or no sorting by Secondary Debris flows varying proportions of Tills water; usually poorly (After Lawson) boulders-cobbles- sorted, commonly sand-silt-clay; with no Primary massive, may contain Tills genetic connotation striated clasts; till is a glacial diamict. Meltout Lodgement Mass movement 1 11/5/09 Processes of Types of till deposition • Lodgement- frictional 1. Lodgement till resistence between a clast in transport at the base exceeds the 2. Subglacial meltout till drag imposed by the ice; grain by grain plastering 3. Deformation till • Meltout- direct release by 4. Supraglacial meltout melting till • Sublimation -- vaporization of ice causing direct 5. Flow till release of debris 6. Sublimation till • Subglacial deformation- assimulation of sediment into a deforming layer beneath a glacier Describing Diamicts - nothing diagnostic Lodgement Till subglacial lodgement in three ways by actively 1. Texture moving ice; rates ~ 3cm/yr 2. Clast shape • Direct lodgement - 3. Clast mineralogy and lithology grain by grain 4. Sedimentary structures, plastering grading, lenses • Basal melting (pmp) 5. -
The Dynamics and Mass Budget of Aretic Glaciers
DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago -
Glacial Processes and Landforms-Transport and Deposition
Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted. -
Esker Habitat Characteristics and Traditional Land Use in the Slave Geological Province
Re: Esker Habitat Characteristics and Traditional Land Use in the Slave Geological Province STUDY DIRECTOR RELEASE FORM The above publication is the result of a project conducted under the West Kitikmeot / Slave Study. I have reviewed the report and advise that it has fulfilled the requirements of the approved proposal and can be subjected to independent expert review and be considered for release to the public. Study Director Date INDEPENDENT EXPERT REVIEW FORM I have reviewed this publication for scientific content and scientific practices and find the report is acceptable given the specific purposes of this project and subject to the field conditions encountered. Reviewer Date INDEPENDENT EXPERT REVIEW FORM I have reviewed this publication for scientific content and scientific practices and find the report is acceptable given the specific purposes of this project and subject to the field conditions encountered. Reviewer Date BOARD RELEASE FORM The Study Board is satisfied that this final report has been reviewed for scientific content and approves it for release to the public. Chair West Kitikmeot/Slave Society Date Box 2572, Yellowknife, NT, X1A 2P9 Ph (867) 669-6235 Fax (867) 920-4346 e-mail: [email protected] Home Page: http://www.wkss.nt.ca ESKER HABITAT CHARACTERISTICS and TRADITIONAL USE STUDY in the SLAVE GEOLOGICAL PROVINCE FINAL REPORT to the WEST KITIKMEOT / SLAVE STUDY Submitted by: Stephen Traynor Senior Land Specialist – Land Administration Indian and Northern Affairs Canada Yellowknife, NT August 2001 SUMMARY In May of 1996 approval was granted and funding awarded by the West Kitikmeot Slave Study Society (WKSS) for a project to initiate research and information dissemination on eskers in the Slave Geological Province.