Conference Time in Stockholm

Total Page:16

File Type:pdf, Size:1020Kb

Conference Time in Stockholm CERN Courier October 2013 EPS-HEP 2013 Verify and optimize your designs with COMSOL Multiphysics.® Conference time in RF COUPLER: This model computes the transmission probability through an RF coupler using both the angular coefficient method Stockholm available in the Free Molecular Flow interface and a Monte Carlo method using the Mathematical Particle Tracing interface. Multiphysics tools let you build simulations that accurately replicate the important characteristics of your designs. The key is the ability to include all physical effects that exist in the real world. To learn more about COMSOL Multiphysics, visit www.comsol.com/introvideo © Copyright 2013 COMSOL The Higgs boson, dark matter and rare The city of Stockholm provided a beautiful setting for the 2013 edition of EPS-HEP, one of the major international summer processes were among the highlights of the conferences in particle physics. (Image credit: Marina 2013 International Europhysics Conference on Lukashova/Dreamstime.com.) 0.5% precision – better than for any quark – and several tests by thermodynamicscompetent High-Energy Physics. P www.reuter-technologie.de ATLAS and CMS show that its spin-parity, J , is compatible with the 0+ expected for a Standard Model Higgs boson. These results exclude other models to greater than 95% confi dence level (CL), while a new When the Swedish warship Vasa capsized in Stockholm harbour result from DØ rejects a graviton-like 2+ at >99.2% CL. Your Expert for Vacuum Brazing and UHV Systems on her maiden voyage in 1628, many hearts must have also sunk The new boson’s couplings provide a crucial test of whether it is metaphorically, as they did at CERN in September 2008 when the the particle responsible for electroweak-symmetry breaking in the UHV compatible joining of LHC’s start-up came to an abrupt end. Now, the raised and pre- Standard Model. A useful parameterization for this test is the ratio Ceramic to Stainless Steel served Vasa is the pride of Stockholm and the LHc – following a of the observed signal strength to the Standard Model prediction, Low and high temperature successful restart in 2009 – is leading research in particle physics μ = (σ × BR)/(σ × BR) , where σ is the cross-section and BR the technologies SM Waveguide structures at the high-energy frontier. This year the two icons crossed paths branching fraction. The results for the fi ve major decay channels Development and design when the International Europhysics Conference on High-Energy measured so far (γγ, WW*, ZZ*, bb and ττ) are consistent with the of complex systems Physics, EPS-HEP 2013, took place in Stockholm on 18–24 July, expectations for a Standard Model Higgs boson, i.e. μ = 1, to 15% hosted by the KTH (Royal Institute of Technology) and Stockholm accuracy. Although it is too light to decay to the heaviest quark University. Latest results from the LHC experiments featured in – top, t – and its antiquark, the new boson can in principle be pro- many of the parallel, plenary and poster sessions – and the 750 or duced together with a tt- pair, so yielding a sixth coupling. While so participants had the opportunity to see the Vasa for themselves this is a challenging channel, new results from CMS and ATLAS at the conference dinner. There was, of course, much more and this are starting to approach the level of sensitivity for the Standard report can only touch on some of the highlights. Model Higgs boson, which bodes well for its future use. Coming a year after the fi rst announcement of the discovery of a The mass of the top quark is in fact so large – 173 GeV/c2 – that it Vacuum brazing of “Higgs-like” boson on 4 July 2012, the conference was the perfect decays before forming particles, making it possible to study the Diamond to Copper occasion for a birthday celebration for the new particle. Not only has “bare” quark. At the conference, the CMS collaboration announced its identity been more fi rmly established in the intervening time – it the fi rst observation, at 6.0σ, of the associated production of a top Clean room assembly and particle-free cleaning almost certainly is a Higgs boson – but many of its attributes have quark and a W boson, in line with the Standard Model’s prediction. been measured by the ATLAS and CMS experiments at the LHC, Both ATLAS and CMS had previously found evidence for this as well as by the CDF and DØ collaborations using data collected process but not to this significance. The DØ collaboration REUTER TECHNOLOGIE GmbH Roentgenstr. 1 63755 Alzenau Germany E-Mail: [email protected] Tel.: +49 (0)6023 / 5044 - 0 ▲ at Fermilab’s Tevatron. At 125.5 GeV/c2, its mass is known to within presented latest results on the lepton-based forward–backward 37 p36.indd 1 09/09/2013 16:28 CERNCOURIER www. V OLUME 5 3 N UMBER 8 O CTOBER 2 0 1 3 CERN Courier October 2013 CERN Courier October 2013 EPS-HEP 2013 EPS-HEP 2013 lepton asymmetry in tt- production, which had previously indicated constitute dark matter, which is becoming a worldwide effort. Indeed, some deviation from theory. The new measurement, based on the although the Higgs boson may have been top of the bill for hadron- full data set of 9.7 fb–1 of proton–antiproton collisions at the collider physics, more generally, the number of papers with dark mat- +1.1 Tevatron, gives an asymmetry of (4.7±2.3 stat. –1.4 syst.)%, which is ter in the title is growing faster than those on the Higgs boson. consistent with predictions from the Standard Model to next-to- While experiments at the LHC look for the production of new leading order. kinds of particles with the correct properties to make dark mat- The study of B hadrons, which contain the next heaviest quark, b, ter, “direct” searches seek evidence of interactions of dark-matter is one of the aspects of fl avour physics that could yield hints of new particles in the local galaxy as they pass through highly sensitive physics. One of the highlights of the conference was the announce- detectors on Earth. Such experiments are showing an impressive 0 ment of the observation of the rare decay mode Bs → μμ by both the evolution with time, increasing in sensitivity by about a factor of 10 LHCb and CMS collaborations, at 4.0 and 4.3σ, respectively (CERN every two years and now reaching cross-sections down to 10–8 pb. Courier September 2013 p19). While there had been hopes that Among the many results presented, an analysis of 140.2-kg days of this decay channel might open a window on new physics, the long- data in the silicon detectors of the CDMS II experiment revealed awaited results align with the predictions of the Standard Model. The three WIMP-candidate events with an expected background of BaBar and Belle collaborations also reported on their precise meas- The museum that now houses the 17th century Swedish warship 0.7. A likelihood analysis gives a 0.19% probability for the known Plenary sessions took place in the magnifi cent Aula Magna (*) urements of the decay B → D τντ at SLAC and KEK, respectively, Vasa provided a fascinating venue for the conference dinner. background-only hypothesis. lecture theatre on the Stockholm University campus. (Image which together disagree with the Standard Model at the 4.3σ level. (Image credit: Bluesunphoto/Dreamstime.com.) “indirect” searches, by contrast, involve in particular the search credit: T Pritchard.) The results rule out one model that adds a second Higgs doublet to from signals from dark-matter annihilation in the cosmos. In the Standard Model (2HDM type II) but are consistent with a differ- results come from the analysis of proton–lead collisions and reveal 2012, an analysis of publically available data from 43 months of terrestrial origin (CERN Courier July/August 2013 p5). ent variant, 2HDM type IIi – a reminder that the highest energies are features that previously were seen only in lead–lead collisions, where the Fermi Large Area Telescope (LAT) indicated a puzzling sig- not the only place where new physics could emerge. the hot dense matter that was created appears to behave like a perfect nal at 130 GeV, with the interesting possibility that these γ rays Towards the future liquid. The new results could indicate that similar effects occur in could originate from the annihilation of dark-matter particles. A In addition to the sessions on the latest results, others looked to the Precision, precision proton–lead collisions, even though far fewer protons and neutrons new analysis by the Fermi LAT team of four years’ worth of data continuing health of the fi eld with presentations of studies on novel Precise measurements require precise predictions for comparison are involved. Other results from ALICE included the observation of gives preliminary indications of an effect with a local signifi cance ideas for future particle accelerators and detection techniques. and here theoretical physics has seen a revolution in calculating higher yields of J/ψ particles in heavy-ion collisions at the LHC than of 3.35σ but the global signifi cance is less than 2σ. The HESS II These topics also featured in the special session for the European next-to-leading order (NLO) effects, involving a single loop in the at Brookhaven’s Relativistic Heavy-Ion Collider, although the den- experiment is currently accumulating data and might soon be able Committee for Future Accelerators, which looked at future devel- related Feynman diagrams. Rapid progress during the past few sities are much higher at the LHC (CERN Courier September 2013 to cross-check these results.
Recommended publications
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • The Discovery of the Higgs Boson at the LHC
    Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T.
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Die Entdeckung Des Higgs-Teilchens Am CERN
    Die Entdeckung des Higgs-Teilchens am CERN Prof. Karl Jakobs Physikalisches Institut Universität Freiburg From the editorial: “The top Breakthrough of the Year – the discovery of the Higgs boson – was an unusually easy choice, representing both a triumph of the human intellect and the culmination of decades of work by many thousands of physicists and engineers.” Nobel-Preis für Physik 2013: François Englert und Peter Higgs “ … for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of sub-atomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.” EPS Prize 2013: The 2013 High Energy and Particle Physics Prize, for an outstanding contribution to High Energy Physics, is awarded to the ATLAS and CMS collaborations, “for the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism”, and to Michel Della Negra, Peter Jenni, and Tejinder Virdee, “for their pioneering and outstanding leadership rôles in the making of the ATLAS and CMS experiments”. Physik-Journal Februar 2015: “.. Obwohl in diesen großen Kollaborationen eine große Zahl von Forschern mitarbeitet, ist es möglich, einzelne Forscherpersönlichkeiten herauszuheben, deren Ideen und Arbeit für den Erfolg des Experiments von besonderer Bedeutung waren. Zu diesen gehört neben den Sprechern der Experimente Karl Jakobs.” The Standard Model of Particle Physics γ mW ≈ 80.4 GeV mZ ≈ 91.2 GeV (i) Matter particles: quarks and leptons (spin ½, fermions) (ii) Four fundamental forces: described by quantum field theories (except gravitation) à massless spin-1 gauge bosons (iii) The Higgs field à scalar field, spin-0 Higgs boson The Brout-Englert-Higgs Mechanism F.
    [Show full text]
  • PARTICLE PHYSICS 2013ª Highlights and Annual Report 2 | Contents Contentsª
    ª PARTICLE PHYSICS Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association PARTICLE PHYSICS 2013 2013ª The Helmholtz Association is a community grand challenges faced by society, science and of 18 scientific-technical and biological- industry. Helmholtz Centres perform top-class Highlights medical research centres. These centres have research in strategic programmes in six core been commissioned with pursuing long-term fields: Energy, Earth and Environment, Health, and Annual Report research goals on behalf of the state and Key Technologies, Structure of Matter, Aero- society. The Association strives to gain insights nautics, Space and Transport. and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the www.helmholtz.de Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association Imprint Publishing and contact Editing Deutsches Elektronen-Synchrotron DESY Ilka Flegel, Manfred Fleischer, Michael Medinnis, A Research Centre of the Helmholtz Association Thomas Schörner-Sadenius Hamburg location: Layout Notkestr. 85, 22607 Hamburg, Germany Diana Schröder Tel.: +49 40 8998-0, Fax: +49 40 8998-3282 Production [email protected] Monika Illenseer Zeuthen location: Printing Platanenallee 6, 15738 Zeuthen, Germany Druckerei Heigener Europrint, Hamburg Tel.: +49 33762 7-70, Fax: +49 33762 7-7413 [email protected] Editorial deadline 28 February 2014 www.desy.de ISBN 978-3-935702-87-4 Editorial note doi: 10.3204/DESY_AR_ET2013 The authors of the individual scientific contributions published in this report are fully responsible for the contents. Cover A possible design of CTA, the Cherenkov Telescope Array.
    [Show full text]
  • 2014André Lagarrigue Prize
    2014 André Lagarrigue Prize The international jury1 of the André Lagarrigue prize, meeting under the chairmanship of Jacques Martino, director of IN2P3, has awarded the 2014 prize to Michel Della Negra, physicist emeritus of the CERN Physics Department, presently CMS emeritus at Imperial College, London. The award, established in 2005 under the aegis of the French Physical Society, pays tribute to Professor André Lagarrigue, director of the Laboratory of Linear Accelerator (LAL, Orsay) from 1969 to 1975, who had a major role in the discovery of neutral weak interactions with the Gargamelle bubble chamber at CERN, thus establishing the validity of the electroweak theory. The award, co-funded by the CEA, CERN, Ecole Polytechnique, IN2P3-CNRS, LAL and Université Paris-Sud, is awarded every two years. Born leader, with deep understanding of physics, in direct André Lagarrigue’s lineage, Michel Della Negra has shown outstanding qualities as a builder of experimental devices of great complexity. He is one of the major players in two fundamental discoveries: the W and Z bosons, carriers of the weak interaction with the UA1 SppS, and the Higgs boson with CMS at the LHC. Born in 1942, a graduate of the Ecole Polytechnique, Paris, he begins his career at the Laboratory of Nuclear Physics of the College de France. He defends his thesis in 1967 on the study of proton-antiproton annihilations at rest, using bubble chamber photographs. He is recruited by the CNRS in 1968. During a postdoctoral stay at SLAC (1970-1972), he joins the first deep inelastic scattering experiment using a 17 GeV muon beam interacting on the protons of a rapid cycling bubble chamber, and he is given the responsibility of the muon system.
    [Show full text]
  • 30 Years of Hadron Colliders
    30 Years of Hadron Colliders M. Della Negra/CERN Islamabad, 16 December 2004 Hadron & Electron Colliders 4 10 Accelerators LHC electron 3 10 hadron Higgs boson Tevatron SppS LEPII t quark 2 10 SLC TRISTAN W, Z bosons PEP CESR 1 10 ISR SPEAR b quark c quark 0 10 Prin-Stan Constituent CM Energy (GeV) Parton-parton C.M. Energy (GeV) C.M. Parton-parton s quark -1 10 1960 1970 1980 1990 2000 2010 StartingStarting Year Year Michel Della Negra/Islamabad 16 December 2004 2 Intersecting Storage Rings, ISR First hadron collider (p-p) (approved by CERN Council Dec 1965) CCRS 1976 First collisions in Jan 1971 √s = 23, 30, 44, 53, 62 GeV L~ 1031cm-2s-1 Most experiments: Inclusive spectra in small solid angle spectrometers looking at forward angles. Three Collaborations looked at large angle: BS, SS, CCR (1973) Excess at large pT Parton-parton collisions? Michel Della Negra/Islamabad 16 December 2004 3 -8 ISR: the pT puzzle (1) Expectations from the parton model: From dimension arguments the parton-parton scattering cross- CCRS 1976 section should behave as dσ = f (tˆ / sˆ )sˆ −2 dtˆ Then the inclusive cross- section should behave as -4 pT at fixed xT: d 3σ 1 E 3 = 4 f (xT ,cosθ) dp pT 2 p with x = T T s d 3σ 1 -8 E 3 ≈ A 8 exp(−26xT ) But CCRS data scale as pT dp pT Michel Della Negra/Islamabad 16 December 2004 4 -8 ISR: the pT puzzle (2) -8 Force pT ? meson+quark→ meson+quark (CIM) or adhoc “black box” cross section (FF1) dσ 1 1 ∝ → dtˆ sˆ 2 sˆ 4 Or improve parton model : CCHK 1977 keep natural dimensional scaling for pointlike constituents.
    [Show full text]
  • HUK+Adult+FW1920+Catalogue+-+
    Saving You By (author) Charlotte Nash Sep 17, 2019 | Paperback $24.99 | Three escaped pensioners. One single mother. A road trip to rescue her son. The new emotionally compelling page-turner by Australia's Charlotte Nash In their tiny pale green cottage under the trees, Mallory Cook and her five-year- old son, Harry, are a little family unit who weather the storms of life together. Money is tight after Harry's father, Duncan, abandoned them to expand his business in New York. So when Duncan fails to return Harry after a visit, Mallory boards a plane to bring her son home any way she can. During the journey, a chance encounter with three retirees on the run from their care home leads Mallory on an unlikely group road trip across the United States. 9780733636479 Zadie, Ernie and Jock each have their own reasons for making the journey and English along the way the four of them will learn the lengths they will travel to save each other - and themselves. 384 pages Saving You is the beautiful, emotionally compelling page-turner by Charlotte Nash, bestselling Australian author of The Horseman and The Paris Wedding. Subject If you love the stories of Jojo Moyes and Fiona McCallum you will devour this FICTION / Family Life / General book. 'I was enthralled... Nash's skilled storytelling will keep you turning pages until Distributor the very end.' FLEUR McDONALD Hachette Book Group Contributor Bio Charlotte Nash is the bestselling author of six novels, including four set in country Australia, and The Paris Wedding, which has been sold in eight countries and translated into multiple languages.
    [Show full text]
  • Data-Driven Estimation of Z Background Contributions to The
    IEKP-KA/2011-21 Data-driven Estimation of Z0 Background Contributions to the + Higgs Search in the H τ τ − ! Channel with the CMS Experiment at the LHC Armin Burgmeier Diploma Thesis at the Physics Department of the Karlsruhe Institute of Technology Referent: Prof. Dr. G. Quast Institut für Experimentelle Kernphysik Korreferent: Prof. Dr. W. de Boer Institut für Experimentelle Kernphysik August 1, 2011 Deutsche Zusammenfassung Schon seit jeher erforschen Menschen systematisch ihre Umgebung und versuchen sie zu ihrem Vorteil zu verändern. Diese Anstrengungen haben den heutigen Wohlstand erst ermöglicht. Dennoch ist die gezielte Forschung heute intensiver denn je - ein Zeichen dafür dass noch längst nicht alles verstanden ist was es zu verstehen gibt und dass eine Entdeckung oftmals viele neue Fragen aufwirft. In der Grundlagenforschung wird die Erweiterung des Wissens der Menschheit an- gestrebt ohne gezielt Anwendungsfälle im Hinterkopf zu haben. Oft haben sich solche Entdeckungen später jedoch als äußerst nützlich erwiesen, darunter beispielsweise die Supraleitung. Die technischen Herausforderungen sind heutzutage so groß, dass alleine um die Experimente zu errichten neue Konzepte und Technologien entwickelt werden müssen. Das prominenteste Beispiel hierzu ist wohl das World Wide Web, das 1989 am Forschungszentrum CERN entwickelt wurde um Forschungsergebnisse innerhalb immer größer werdenden Teams austauschen zu können. Im Bereich der Elementarteilchenphysik, in den diese Arbeit einzuordnen ist, führten Messungen an Teilchenbeschleunigern und kosmischer Strahlung zur Entwicklung des Standardmodells der Teilchenphysik. Das Standardmodell beschreibt die kleinsten bisher bekannten Bauteile der Materie, genannt Teilchen, und mit Ausnahme der Gravitation auch deren Wechselwirkungen. Es erlaubt Rückschlüsse auf die Entwicklung des frühen Universums zu ziehen als auch Vorhersagen für zukünftige Experimente zu treffen.
    [Show full text]
  • Nuclear Science Symposium Medical Imaging Conference
    IEEE NUCLEAR SCIENCE SYMPOSIUM andMEDICAL IMAGING CONFERENCE HAWAII 2007 OCTOBER 27 - NOVEMBER 3 Honolulu, Hawaii, USA me Hilton Hawaiin Village Beach Resort & Spa www.nss-mic.org/2007 welco The 2007 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC) is sponsored by: The Nuclear and Plasma Sciences Society of the Institute of Electrical and Electronic Engineers With generous contributions from PLATINUM SUPPORTERS: National Nuclear Security Administration Office of Nonproliferation Research and Development US Department of Energy For support of scientific and education programs Siemens Medical Solutions For support of the MIC banquet GOLD SUPPORTERS: GE Healthcare For support of trainee travel grants Hamamatsu For support of conference bags ORTEC For support of conference bags Philips Medical Systems For support of trainee travel grants Shanghai Institute of Ceramics Chinese Academy of Sciences For support of USB drive with abstracts SILVER SUPPORTERS: Merck Research Laboratories For support of trainee travel grants FRIENDS: Saint-Gobain For support of trainee travel grants In cooperation with: Brookhaven National Laboratory, USA California Institute of Technology, USA CEA-Saclay, France Duke University, USA The European Organization for Nuclear Research, Switzerland The John Hopkins Medical Institutions, USA Lawrence Berkeley Laboratory, USA Lawrence Livermore National Laboratory, USA University of California, Los Angeles, USA Hilton Hawaiian Village® Beach Resort & Spa Mid-Pacific Conference Center POSTER PRESENTATION
    [Show full text]
  • Julius–Maximilians–Universität Würzburg
    Julius–Maximilians–Universitat¨ Wurzburg¨ Institut f¨ur Theoretische Physik und Astronomie Theoretische Physik II A Supersymmetric Higgsless Model Of Electroweak Symmetry Breaking Diploma thesis by Karoline K¨opp Supervised by Prof. Dr. Thorsten Ohl 31. 03. 2009 Zusammenfassung Die vorliegende Diplomarbeit besch¨aftigt sich mit einem supersymmetrischen higgslosen Model mit einer gekrummten¨ Extradimension. In Modellen mit kompakten zus¨atzlichen r¨aumlichen Di- mensionen kann die elektroschwache Eichsymmetrie ohne ein Higgs-Feld, wie es vom Standard- modell der Elementarteilchenphysik vorhergesagt wird, durch Randbedingungen gebrochen wer- den. Die Erforschung dieser Modellen stellt daher einen alternativen Zugang zum Verst¨andnis der elektroschwachen Symmetriebrechung dar, deren zugrundeliegender Mechanismus bisher experimentell noch nicht bestimmt werden konnte. Modelle mit einem exponentiell gekrummten¨ Randall-Sundrum Raumzeithintergrund, haben sich in den vergangenen Jahren als besonders vielversprechend erwiesen. In einer Erweiterung [1] des ursprunglichen¨ Modells [2] werden gekrummte¨ Extradimensionen mit Supersymmetrie (SUSY) verbunden. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung einer neuen und vergleichsweise sanften Art der SUSY-Brechung auf einer getrennten infraroten Brane“ in der ” neuen Dimension. Die Arbeit ist wie folgt aufgebaut: Zun¨achst werden in Kapitel eins und zwei die notwendigen Grundlagen zu Extradimensionen und Supersymmetrie besprochen, um das Modell im dritten Kapitel einfuhren¨ zu k¨onnen. Der Aufbau des Modells auf zwei back-to-back“ Intervallen und ” das resultierende Massenspektrum bilden den Ausgangspunkt fur¨ alle weiteren Untersuchungen. Die konkrete Wahl der Randbedingungen und Modellparameter wird in den anschliessenden Kapiteln vier und funf¨ fur¨ den Eich- und den Materiesektor getrennt diskutiert und konkret begrundet.¨ Wir untersuchen die Kaluza-Klein Wellenfunktionen und geben N¨aherungsl¨osungen fur¨ die leichtesten Moden des Spektrums an.
    [Show full text]
  • Subnuclear Physics: Past, Present and Future
    the Pontifical academy of ScienceS International Symposium on Subnuclear Physics: Past, Present and Future 30 Octobe r- 2 November 2011 • Casina Pio IV Introduction p . 3 Programme p. 4 List of Participants p. 8 Biographies of Participants p. 11 Memorandum p. 20 em ad ia c S a c i e a n i t c i i a f i r t V n m o P VatICaN CIty 2011 H.H. Benedict XVI in the garden of the Basilica di Santa Maria degli angeli e dei Martiri with the statue of “Galilei Divine Man” donated to the Basilica by CCaSt of Beijing. he great Galileo said that God wrote the book of nature in the form of the language of mathematics. He was convinced that God has given us two tbooks: the book of Sacred Scripture and the book of nature. and the lan - guage of nature – this was his conviction – is mathematics, so it is a language of God, a language of the Creator. Encounter of His Holiness Benedict XVI with the Youth , St Peter’s Square, thursday, 6 april 2006. n the last century, man certainly made more progress – if not always in his knowledge of himself and of God, then certainly in his knowledge of the macro- Iand microcosms – than in the entire previous history of humanity. ... Scientists do not create the world; they learn about it and attempt to imitate it, following the laws and intelligibility that nature manifests to us. the scientist’s experience as a human being is therefore that of perceiving a constant, a law, a logos that he has not created but that he has instead observed: in fact, it leads us to admit the existence of an all-powerful Reason, which is other than that of man, and which sustains the world.
    [Show full text]