PARTICLE PHYSICS 2013ª Highlights and Annual Report 2 | Contents Contentsª

Total Page:16

File Type:pdf, Size:1020Kb

PARTICLE PHYSICS 2013ª Highlights and Annual Report 2 | Contents Contentsª ª PARTICLE PHYSICS Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association PARTICLE PHYSICS 2013 2013ª The Helmholtz Association is a community grand challenges faced by society, science and of 18 scientific-technical and biological- industry. Helmholtz Centres perform top-class Highlights medical research centres. These centres have research in strategic programmes in six core been commissioned with pursuing long-term fields: Energy, Earth and Environment, Health, and Annual Report research goals on behalf of the state and Key Technologies, Structure of Matter, Aero- society. The Association strives to gain insights nautics, Space and Transport. and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the www.helmholtz.de Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association Imprint Publishing and contact Editing Deutsches Elektronen-Synchrotron DESY Ilka Flegel, Manfred Fleischer, Michael Medinnis, A Research Centre of the Helmholtz Association Thomas Schörner-Sadenius Hamburg location: Layout Notkestr. 85, 22607 Hamburg, Germany Diana Schröder Tel.: +49 40 8998-0, Fax: +49 40 8998-3282 Production [email protected] Monika Illenseer Zeuthen location: Printing Platanenallee 6, 15738 Zeuthen, Germany Druckerei Heigener Europrint, Hamburg Tel.: +49 33762 7-70, Fax: +49 33762 7-7413 [email protected] Editorial deadline 28 February 2014 www.desy.de ISBN 978-3-935702-87-4 Editorial note doi: 10.3204/DESY_AR_ET2013 The authors of the individual scientific contributions published in this report are fully responsible for the contents. Cover A possible design of CTA, the Cherenkov Telescope Array. Reproduction including extracts is permitted subject to crediting the source. (Credit: G. Pérez, IAC) This report is neither for sale nor may be resold. PARTICLE PHYSICS 2013ª Highlights and Annual Report 2 | Contents Contentsª º Introduction 4 º News and events 11 º Research topics 23 º References 105 Contents | 3 The year 2013 at DESYª Chairman’s foreword 2013 was very busy for DESY. In the last years, DESY has most heart of the facility, and the successful implementation of their successfully brought about many new projects, such as the industrial series production once again underlines DESY’s European XFEL X-ray laser, the new FLASH II free-electron laser competence in accelerator R&D. Cavity performance tests at facility and the extensions of the experimental hall of the PETRA III DESY proved that the required technical specifications were met synchrotron radiation source. In parallel to the development of or even exceeded, which is also an interesting technological new user facilities, new research centres are being established achievement for future linear accelerator and collider projects. at DESY that exploit the unique properties of the DESY light The European XFEL will emit first laser light in 2016. sources, such as the interdisciplinary Centre for Structural Systems Biology (CSSB). All these projects are now under 2013 was also a very successful year in particle and astroparticle construction, shaping the current picture of the DESY campus. physics. The clear highlight of the year was the discovery of the first high-energy extragalactic neutrinos by the IceCube neutrino The construction of the European XFEL X-ray free-electron laser telescope at the South Pole. The much-acclaimed discovery is DESY’s top-priority endeavour. DESY contributes significant is a marvellous success in neutrino astrophysics, celebrated resources to this international prestige project. The super- worldwide as a scientific breakthrough of the year 2013. DESY conducting niobium cavities devised by DESY are at the is a very visible partner in the IceCube consortium and very DESY's expertise is essential to the IceCube neutrino telescope at the South Pole, whose discovery of extragalactic neutrinos was selected by Physics World as breakthrough of the year 2013. 4 | Introduction The underground construction for the European XFEL X-ray laser was completed in June 2013. From left to right: Helmut Dosch (DESY), Stephan Hebgen (ARGE Tunnel XFEL), Dorothee Stapelfeldt (Senator for Science Hamburg), Christian Scherf (DESY), Beatrix Vierkorn-Rudolph (Head of the Directorate for Large Facilities and Basic Research, BMBF), Claudia Burger (European XFEL) and Massimo Altarelli (European XFEL). proud of this scientific achievement. In the field of gamma also at DESY for the restart of LHC operation in spring 2015. astronomy, DESY is currently devoting considerable efforts to Moreover, DESY is currently preparing components for get the new Cherenkov Telescope Array (CTA) up and running, installation in the coming years and in particular during the next an international gamma-ray observatory that will provide novel long LHC shutdown in 2018. In parallel, several DESY groups insights into the depth of the non-thermal high-energy universe. are carrying out intensive R&D work for major upgrades of the High-energy gamma radiation is produced during cosmic events detectors for the high-luminosity phase of the LHC. of tremendous violence, such as supernova explosions. This new observatory will enable the investigation of largely Along with other Helmholtz centres within the research field unexplored energy ranges from 100 GeV to some 10 TeV with “Structure of Matter”, DESY has been very busy in 2013 unprecedented sensitivity. Focusing the scientific programme formulating its research plans for the upcoming Helmholtz of DESY in Zeuthen on this large-scale international funding period 2015-2019, which will enable DESY to project bears fruits in the potential privilege to host the CTA continue all its ambitious activities. I am confident that we will headquarters. convince the international reviewers of the outstanding quality of our programme. The Nobel Committee awarded the 2013 Nobel Prize in Physics to François Englert and Peter Higgs for their theory explaining the mass of elementary particles. In the prize announcement, the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland, were explicitly mentioned for their significant contributions to the understanding of the origin of mass and in particular for their discovery of the Higgs boson. DESY was involved at several points in this discovery, among others with several Helmut Dosch junior research groups. Right now, preparations are under way Chairman of the DESY Board of Directors Introduction | 5 Particle and astroparticle physics at DESYª Introduction The year 2013 was remarkably eventful for particle and astroparticle physics at DESY. The new particle discovered in 2012 at CERN’s Large Hadron Collider (LHC) was identified as a Higgs boson, and consequently the fathers of the Higgs mechanism, Francois Englert and Peter Higgs, were awarded the 2013 Nobel Prize in Physics. Other projects in particle physics, like the planned International Linear Collider (ILC) or the Belle II experiment at the SuperKEKB collider in Japan, reached major milestones and received considerable attention. In astroparticle physics, the confirmation of extragalactic neutrinos, as discovered by the IceCube neutrino telescope at the South Pole, presented a major achievement. In parallel to all the work leading up to these physics successes, DESY has Francois Englert and Peter Higgs, Nobel laureates in physics 2013, together with the been preparing for the next five-year funding period of the Swedish Royal family during the prize ceremony (Courtesy: © Nobel Media AB 2013, Helmholtz Association, which will start in 2015. Photo: Alex Ljungdahl) In May 2013, at a special meeting at the European Commission in technical and financial basis for such a major endeavour. Brussels, the CERN Council adopted the updated European Strategy for Particle Physics. This strategy defines a clear path The data and the knowledge acquired at DESY’s former into the future, with the full exploitation of the LHC, including HERA collider on the proton structure prove more and more the high-luminosity phase reaching into the 2030s, and the ILC important for LHC analyses. We are therefore happy to see among the highest-priority projects. This strategy is fully in line eminent progress in combining the corresponding efforts at with DESY’s plans for particle physics as laid down in the both colliders. The completion of the HERA data analysis is proposal “Fundamental Particles and Forces” for the third period progressing well, and several key measurements were of the Helmholtz Association’s Programme-Oriented Funding published. Particular emphasis is now on the combination of starting in 2015. This proposal rests on a triangle formed by the results from the H1 and ZEUS experiments. The HERA DESY’s main activities: the LHC, experiments at electron–positron collaborations are preparing to preserve their data in a way to colliders (ILC and Belle II) and a strong theory group. enable analysis of their unique data set also in the future. With the discovery of a Higgs boson, the LHC has taken but its The ILC saw two major achievements in 2013. First, the first step. Although so far all measurements of the new technical design report for this next large-scale project in particle’s properties indicate its compatibility with the Higgs particle physics was published – a step with which the mandate boson of the Standard Model of particle physics, more data of the Global Design Effort ended. The GDE is succeeded and higher centre-of-mass energies are needed to fully by the Linear Collider Collaboration, which combines under its establish the character of the particle. To this end, DESY roof all efforts worldwide towards the realisation of an electron– scientists and technicians are working tirelessly with their positron linear collider. DESY scientists are playing leading roles colleagues in the LHC collaborations on preparations for the in this global effort. Also in 2013, the Japanese high-energy LHC Run 2, which will begin in spring 2015, and on the physics community selected a potential construction site for the necessary detector upgrades.
Recommended publications
  • 15Th October at 19:00 Hours Or 7Pm AEST
    TheSky (c) Astronomy Software 1984-1998 TheSky (c) Astronomy Software 1984-1998 URSA MINOR CEPHEUS CASSIOPEIA DRACO Night sky map OctoberDRACO 2017 URSA MAJOR North North STAR BRIGHTNESS Zero or brighter 1st magnitude nd LACERTA Deneb 2 NE rd NE Vega CYGNUS CANES VENATICI LYRAANDROMEDA 3 Vega NW th NW 4 LYRA LEO MINOR CORONA BOREALIS HERCULES BOOTES CORONA BOREALIS HERCULES VULPECULA COMA BERENICES Arcturus PEGASUS SAGITTA DELPHINUS SAGITTA SERPENS LEO Altair EQUULEUS PISCES Regulus AQUILAVIRGO Altair OPHIUCHUS First Quarter Moon SERPENS on the 28th Spica AQUARIUS LIBRA Zubenelgenubi SCUTUM OPHIUCHUS CORVUS Teapot SEXTANS SERPENS CAPRICORNUS SERPENSCRATER AQUILA SCUTUM East East Antares SAGITTARIUS CETUS PISCIS AUSTRINUS P SATURN Centre of the Galaxy MICROSCOPIUM Centre of the Galaxy HYDRA West SCORPIUS West LUPUS SAGITTARIUS SCULPTOR CORONA AUSTRALIS Antares GRUS CENTAURUS LIBRA SCORPIUS NORMAINDUS TELESCOPIUM CORONA AUSTRALIS ANTLIA Zubenelgenubi ARA CIRCINUS Hadar Alpha Centauri PHOENIX Mimosa CRUX ARA CAPRICORNUS TRIANGULUM AUSTRALEPAVO PYXIS TELESCOPIUM NORMAVELALUPUS FORNAX TUCANA MUSCA 47 Tucanae MICROSCOPIUM Achernar APUS ERIDANUS PAVO SMC TRIANGULUM AUSTRALE CIRCINUS OCTANSCHAMAELEON APUS CARINA HOROLOGIUMINDUS HYDRUS Alpha Centauri OCTANS SouthSouth CelestialCelestial PolePole VOLANS Hadar PUPPIS RETICULUM POINTERS SOUTHERN CROSS PISCIS AUSTRINUS MENSA CHAMAELEONMENSA MUSCA CENTAURUS Adhara CANIS MAJOR CHART KEY LMC Mimosa SE GRUS DORADO SMC CAELUM LMCCRUX Canopus Bright star HYDRUS TUCANA SWSW MOON PHASE Faint star VOLANS DORADO
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • 02 Southern Cross
    Asterism Southern Cross The Southern Cross is located in the constellation Crux, the smallest of the 88 constellations. It is one of the most distinctive. With the four stars Mimosa BeCrux, Ga Crux, A Crux and Delta Crucis, forming the arms of the cross. The Southern Cross was also used as a remarkably accurate timepiece by all the people of the southern hemisphere, referred to as the ‘Southern Celestial Clock’ by the portuguese naturalist Cristoval D’Acosta. It is perpendicular as it passes the meridian, and the exact time can thus be calculated visually from its angle. The german explorer Baron Alexander von Humboldt, sailing across the southern oceans in 1799, wrote: “It is a timepiece, which advances very regularly nearly 4 minutes a day, and no other group of stars affords to the naked eye an observation of time so easily made”. Asterism - An asterism is a distinctive pattern of stars or a distinctive group of stars in the sky. Constellation - A grouping of stars that make an imaginary picture in the sky. There are 88 constellations. The stars and objects nearby The Main-Themes in asterism Southern Cross Southern Cross Ga Crux A Crux Mimosa, Be Crux Delta Crucis The Motives in asterism Southern Cross Crucis A Bayer / Flamsteed indication AM Arp+Madore - A Catalogue of Southern peculiar Galaxies and Associations [B10] Boss, 1910 - Preliminary General Catalogue of 6188 Stars C Cluster CCDM Catalogue des composantes d’étoiles doubles et multiples CD Cordoba Durchmusterung Declination Cel Celescope Catalog of ultraviolet Magnitudes CPC
    [Show full text]
  • The Discovery of the Higgs Boson at the LHC
    Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T.
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Die Entdeckung Des Higgs-Teilchens Am CERN
    Die Entdeckung des Higgs-Teilchens am CERN Prof. Karl Jakobs Physikalisches Institut Universität Freiburg From the editorial: “The top Breakthrough of the Year – the discovery of the Higgs boson – was an unusually easy choice, representing both a triumph of the human intellect and the culmination of decades of work by many thousands of physicists and engineers.” Nobel-Preis für Physik 2013: François Englert und Peter Higgs “ … for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of sub-atomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.” EPS Prize 2013: The 2013 High Energy and Particle Physics Prize, for an outstanding contribution to High Energy Physics, is awarded to the ATLAS and CMS collaborations, “for the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism”, and to Michel Della Negra, Peter Jenni, and Tejinder Virdee, “for their pioneering and outstanding leadership rôles in the making of the ATLAS and CMS experiments”. Physik-Journal Februar 2015: “.. Obwohl in diesen großen Kollaborationen eine große Zahl von Forschern mitarbeitet, ist es möglich, einzelne Forscherpersönlichkeiten herauszuheben, deren Ideen und Arbeit für den Erfolg des Experiments von besonderer Bedeutung waren. Zu diesen gehört neben den Sprechern der Experimente Karl Jakobs.” The Standard Model of Particle Physics γ mW ≈ 80.4 GeV mZ ≈ 91.2 GeV (i) Matter particles: quarks and leptons (spin ½, fermions) (ii) Four fundamental forces: described by quantum field theories (except gravitation) à massless spin-1 gauge bosons (iii) The Higgs field à scalar field, spin-0 Higgs boson The Brout-Englert-Higgs Mechanism F.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • HUK+Adult+FW1920+Catalogue+-+
    Saving You By (author) Charlotte Nash Sep 17, 2019 | Paperback $24.99 | Three escaped pensioners. One single mother. A road trip to rescue her son. The new emotionally compelling page-turner by Australia's Charlotte Nash In their tiny pale green cottage under the trees, Mallory Cook and her five-year- old son, Harry, are a little family unit who weather the storms of life together. Money is tight after Harry's father, Duncan, abandoned them to expand his business in New York. So when Duncan fails to return Harry after a visit, Mallory boards a plane to bring her son home any way she can. During the journey, a chance encounter with three retirees on the run from their care home leads Mallory on an unlikely group road trip across the United States. 9780733636479 Zadie, Ernie and Jock each have their own reasons for making the journey and English along the way the four of them will learn the lengths they will travel to save each other - and themselves. 384 pages Saving You is the beautiful, emotionally compelling page-turner by Charlotte Nash, bestselling Australian author of The Horseman and The Paris Wedding. Subject If you love the stories of Jojo Moyes and Fiona McCallum you will devour this FICTION / Family Life / General book. 'I was enthralled... Nash's skilled storytelling will keep you turning pages until Distributor the very end.' FLEUR McDONALD Hachette Book Group Contributor Bio Charlotte Nash is the bestselling author of six novels, including four set in country Australia, and The Paris Wedding, which has been sold in eight countries and translated into multiple languages.
    [Show full text]
  • Stars II Stellar Characteristics: Mass, Temperature, & Size
    Stars II Stellar Characteristics: Mass, Temperature, & Size Attendance Quiz Are you here today? Here! (a) yes (b) no (c) see? I told you so! Clicker registration • If you clicker is not registered (i.e., your name is below), please 1. Come see me during break to register, or 2. Send me an e-mail with your name, BroncoID, and clicker ID by this Sunday • Jason Anaya • Andres Gomez • Scott Carmack • Chris Kuoh • Frankie Combs, Jr. • Kevin McCondichie • Jessie Garcia • Bianca Pescina • Danyel Gil Today’s Topics • Stellar luminosities • Stellar masses • Stellar temperatures and sizes • Laws of Thermal Radiation • Stefan-Boltzmann Law • Luminosity, Temperature and Size • Hertzsprung-Russell Diagram (intro) • Wein’s Law • Stellar Temperatures Any questions on Parallax LT? Stellar Luminosities • Stellar luminosities vary from 0.0001 L¤–1,000,000 L¤, ten orders of magnitude • Note that most of the stars in this image are at the same distance, so their relative apparent brightness is the same as their relative luminosities • Note that there are many more faint stars than bright stars, suggesting that less luminous stars are far more common Stellar Masses • Stellar masses are quite difficult to measure • However, about 2/3 of stars are part of a binary system • In those cases, we can use Kepler’s 3rd law to find masses p2 ∝ a3 where the proportionality constant depends on the masses of the system • In general, for two objects orbiting their center-of-mass 4π 2 a3 M + M = × 1 2 G p2 • For the Solar System M1+M2 ≈ M¤ Stellar Masses • For binary stars,
    [Show full text]
  • Yes, Aboriginal Australians Can and Did Discover the Variability of Betelgeuse
    Journal of Astronomical History and Heritage, 21(1), 7‒12 (2018). YES, ABORIGINAL AUSTRALIANS CAN AND DID DISCOVER THE VARIABILITY OF BETELGEUSE Bradley E. Schaefer Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803, USA Email: [email protected] Abstract: Recently, a widely publicized claim has been made that the Aboriginal Australians discovered the variability of the red star Betelgeuse in the modern Orion, plus the variability of two other prominent red stars: Aldebaran and Antares. This result has excited the usual healthy skepticism, with questions about whether any untrained peoples can discover the variability and whether such a discovery is likely to be placed into lore and transmitted for long periods of time. Here, I am offering an independent evaluation, based on broad experience with naked-eye sky viewing and astro-history. I find that it is easy for inexperienced observers to detect the variability of Betelgeuse over its range in brightness from V = 0.0 to V = 1.3, for example in noticing from season-to-season that the star varies from significantly brighter than Procyon to being greatly fainter than Procyon. Further, indigenous peoples in the Southern Hemisphere inevitably kept watch on the prominent red star, so it is inevitable that the variability of Betelgeuse was discovered many times over during the last 65 millennia. The processes of placing this discovery into a cultural context (in this case, put into morality stories) and the faithful transmission for many millennia is confidently known for the Aboriginal Australians in particular. So this shows that the whole claim for a changing Betelgeuse in the Aboriginal Australian lore is both plausible and likely.
    [Show full text]
  • Nuclear Science Symposium Medical Imaging Conference
    IEEE NUCLEAR SCIENCE SYMPOSIUM andMEDICAL IMAGING CONFERENCE HAWAII 2007 OCTOBER 27 - NOVEMBER 3 Honolulu, Hawaii, USA me Hilton Hawaiin Village Beach Resort & Spa www.nss-mic.org/2007 welco The 2007 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC) is sponsored by: The Nuclear and Plasma Sciences Society of the Institute of Electrical and Electronic Engineers With generous contributions from PLATINUM SUPPORTERS: National Nuclear Security Administration Office of Nonproliferation Research and Development US Department of Energy For support of scientific and education programs Siemens Medical Solutions For support of the MIC banquet GOLD SUPPORTERS: GE Healthcare For support of trainee travel grants Hamamatsu For support of conference bags ORTEC For support of conference bags Philips Medical Systems For support of trainee travel grants Shanghai Institute of Ceramics Chinese Academy of Sciences For support of USB drive with abstracts SILVER SUPPORTERS: Merck Research Laboratories For support of trainee travel grants FRIENDS: Saint-Gobain For support of trainee travel grants In cooperation with: Brookhaven National Laboratory, USA California Institute of Technology, USA CEA-Saclay, France Duke University, USA The European Organization for Nuclear Research, Switzerland The John Hopkins Medical Institutions, USA Lawrence Berkeley Laboratory, USA Lawrence Livermore National Laboratory, USA University of California, Los Angeles, USA Hilton Hawaiian Village® Beach Resort & Spa Mid-Pacific Conference Center POSTER PRESENTATION
    [Show full text]
  • An Aboriginal Australian Record of the Great Eruption of Eta Carinae
    Accepted in the ‘Journal for Astronomical History & Heritage’, 13(3): in press (November 2010) An Aboriginal Australian Record of the Great Eruption of Eta Carinae Duane W. Hamacher Department of Indigenous Studies, Macquarie University, NSW, 2109, Australia [email protected] David J. Frew Department of Physics & Astronomy, Macquarie University, NSW, 2109, Australia [email protected] Abstract We present evidence that the Boorong Aboriginal people of northwestern Victoria observed the Great Eruption of Eta (η) Carinae in the nineteenth century and incorporated the event into their oral traditions. We identify this star, as well as others not specifically identified by name, using descriptive material presented in the 1858 paper by William Edward Stanbridge in conjunction with early southern star catalogues. This identification of a transient astronomical event supports the assertion that Aboriginal oral traditions are dynamic and evolving, and not static. This is the only definitive indigenous record of η Carinae’s outburst identified in the literature to date. Keywords: Historical Astronomy, Ethnoastronomy, Aboriginal Australians, stars: individual (η Carinae). 1 Introduction Aboriginal Australians had a significant understanding of the night sky (Norris & Hamacher, 2009) and frequently incorporated celestial objects and transient celestial phenomena into their oral traditions, including the sun, moon, stars, planets, the Milky Way and Magellanic Clouds, eclipses, comets, meteors, and impact events. While Australia is home to hundreds of Aboriginal groups, each with a distinct language and culture, few of these groups have been studied in depth for their traditional knowledge of the night sky. We refer the interested reader to the following reviews on Australian Aboriginal astronomy: Cairns & Harney (2003), Clarke (1997; 2007/2008), Fredrick (2008), Haynes (1992; 2000), Haynes et al.
    [Show full text]