Cantor on Infinitesimals Historical and Modern Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
A Functional Equation Characterization of Archimedean Ordered Fields
A FUNCTIONAL EQUATION CHARACTERIZATION OF ARCHIMEDEAN ORDERED FIELDS RALPH HOWARD, VIRGINIA JOHNSON, AND GEORGE F. MCNULTY Abstract. We prove that an ordered field is Archimedean if and only if every continuous additive function from the field to itself is linear over the field. In 1821 Cauchy, [1], observed that any continuous function S on the real line that satisfies S(x + y) = S(x) + S(y) for all reals x and y is just multiplication by a constant. Another way to say this is that S is a linear operator on R, viewing R as a vector space over itself. The constant is evidently S(1). The displayed equation is Cauchy's functional equation and solutions to this equation are called additive. To see that Cauchy's result holds, note that only a small amount of work is needed to verify the following steps: first S(0) = 0, second S(−x) = −S(x), third S(nx) = S(x)n for all integers, and finally that S(r) = S(1)r for every rational number r. But then S and the function x 7! S(1)x are continuous functions that agree on a dense set (the rationals) and therefore are equal. So Cauchy's result follows, in part, from the fact that the rationals are dense in the reals. In 1875 Darboux, in [2], extended Cauchy's result by noting that if an additive function is continuous at just one point, then it is continuous everywhere. Therefore the conclusion of Cauchy's theorem holds under the weaker hypothesis that S is just continuous at a single point. -
First-Order Continuous Induction, and a Logical Study of Real Closed Fields
c 2019 SAEED SALEHI & MOHAMMADSALEH ZARZA 1 First-Order Continuous Induction, and a Logical Study of Real Closed Fields⋆ Saeed Salehi Research Institute for Fundamental Sciences (RIFS), University of Tabriz, P.O.Box 51666–16471, Bahman 29th Boulevard, Tabriz, IRAN http://saeedsalehi.ir/ [email protected] Mohammadsaleh Zarza Department of Mathematics, University of Tabriz, P.O.Box 51666–16471, Bahman 29th Boulevard, Tabriz, IRAN [email protected] Abstract. Over the last century, the principle of “induction on the continuum” has been studied by differentauthors in differentformats. All of these differentreadings are equivalentto one of the arXiv:1811.00284v2 [math.LO] 11 Apr 2019 three versions that we isolate in this paper. We also formalize those three forms (of “continuous induction”) in first-order logic and prove that two of them are equivalent and sufficiently strong to completely axiomatize the first-order theory of the real closed (ordered) fields. We show that the third weaker form of continuous induction is equivalent with the Archimedean property. We study some equivalent axiomatizations for the theory of real closed fields and propose a first- order scheme of the fundamental theorem of algebra as an alternative axiomatization for this theory (over the theory of ordered fields). Keywords: First-Order Logic; Complete Theories; Axiomatizing the Field of Real Numbers; Continuous Induction; Real Closed Fields. 2010 AMS MSC: 03B25, 03C35, 03C10, 12L05. Address for correspondence: SAEED SALEHI, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, P.O.Box 51666–16471, Bahman 29th Boulevard, Tabriz, IRAN. ⋆ This is a part of the Ph.D. thesis of the second author written under the supervision of the first author at the University of Tabriz, IRAN. -
สมบัติหลักมูลของฟีลด์อันดับ Fundamental Properties Of
DOI: 10.14456/mj-math.2018.5 วารสารคณิตศาสตร์ MJ-MATh 63(694) Jan–Apr, 2018 โดย สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์ http://MathThai.Org [email protected] สมบตั ิหลกั มูลของฟี ลดอ์ นั ดบั Fundamental Properties of Ordered Fields ภัทราวุธ จันทร์เสงี่ยม Pattrawut Chansangiam Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand Email: [email protected] บทคดั ย่อ เราอภิปรายสมบัติเชิงพีชคณิต สมบัติเชิงอันดับและสมบัติเชิงทอพอโลยีที่สาคัญของ ฟีลด์อันดับ ในข้อเท็จจริงนั้น ค่าสัมบูรณ์ในฟีลด์อันดับใดๆ มีสมบัติคล้ายกับค่าสัมบูรณ์ของ จ านวนจริง เราให้บทพิสูจน์อย่างง่ายของการสมมูลกันระหว่าง สมบัติอาร์คิมีดิสกับความ หนาแน่น ของฟีลด์ย่อยตรรกยะ เรายังให้เงื่อนไขที่สมมูลกันสาหรับ ฟีลด์อันดับที่จะมีสมบัติ อาร์คิมีดิส ซึ่งเกี่ยวกับการลู่เข้าของลาดับและการทดสอบอนุกรมเรขาคณิต คำส ำคัญ: ฟิลด์อันดับ สมบัติของอาร์คิมีดิส ฟีลด์ย่อยตรรกยะ อนุกรมเรขาคณิต ABSTRACT We discuss fundamental algebraic-order-topological properties of ordered fields. In fact, the absolute value in any ordered field has properties similar to those of real numbers. We give a simple proof of the equivalence between the Archimedean property and the density of the rational subfield. We also provide equivalent conditions for an ordered field to be Archimedean, involving convergence of certain sequences and the geometric series test. Keywords: Ordered Field, Archimedean Property, Rational Subfield, Geometric Series วารสารคณิตศาสตร์ MJ-MATh 63(694) Jan-Apr, 2018 37 1. Introduction to those of -
Mathematics in the Austrian-Hungarian Empire
Mathematics in the Austrian-Hungarian Empire Christa Binder The appointment policy in the Austrian-Hungarian Empire In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 43–54. Persistent URL: http://dml.cz/dmlcz/400817 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz THE APPOINTMENT POLICY IN THE AUSTRIAN- -HUNGARIAN EMPIRE CHRISTA BINDER Abstract: Starting from a very low level in the mid oft the 19th century the teaching and research in mathematics reached world wide fame in the Austrian-Hungarian Empire before World War One. How this was complished is shown with three examples of careers of famous mathematicians. 1 Introduction This symposium is dedicated to the development of mathematics in the Austro- Hungarian monarchy in the time from 1850 to 1914. At the beginning of this period, in the middle of the 19th century the level of teaching and researching mathematics was very low – with a few exceptions – due to the influence of the jesuits in former centuries, and due to the reclusive period in the first half of the 19th century. But even in this time many efforts were taken to establish a higher education. -
Preface Issue 4-2014
Jahresber Dtsch Math-Ver (2014) 116:199–200 DOI 10.1365/s13291-014-0108-4 PREFACE Preface Issue 4-2014 Hans-Christoph Grunau © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014 The last few years have been a good time for solving long standing geometrical- topological conjectures. This issue reports on the solution of the Willmore conject-√ ure—the “best” topological torus is a “real” torus with ratio of radii equal to 2— and one of Thurston’s conjectures—every hyperbolic 3-manifold can be fibered over a circle, up to passing to a finite cover. Starting in the 1960s, Thomas Willmore studied the integral of the squared mean curvature of surfaces in R3 as the simplest but most interesting frame invariant elas- tic bending energy. This energy had shown up already in the early 19th century—too early for a rigorous investigation. Willmore asked: What is the shape of a compact surface of fixed genus minimising the Willmore energy in this class? (In the 1990s, existence of minimisers was proved by Leon Simon, with a contribution by Matthias Bauer and Ernst Kuwert.) Willmore already knew that the genus-0-minimiser is a sphere. Assuming that symmetric surfaces require less energy than asymmetric ones (which has not been proved, yet) he studied families√ of geometric tori with the smaller radius 1 fixed and found that the larger radius 2 would yield the minimum in this very special family. He conjectured that this particular torus would be the genus- 1-minimiser. Almost 50 years later Fernando Marques and André Neves found and published a 100-page-proof. -
Hermann Cohen's Das Princip Der Infinitesimal-Methode
Hermann Cohen’s Das Princip der Infinitesimal-Methode: The History of an Unsuccessful Book Marco Giovanelli Abstract This paper offers an introduction to Hermann Cohen’s Das Princip der Infinitesimal-Methode (1883), and recounts the history of its controversial reception by Cohen’s early sympathizers, who would become the so-called ‘Marburg school’ of Neo-Kantianism, as well as the reactions it provoked outside this group. By dissecting the ambiguous attitudes of the best-known represen- tatives of the school (Paul Natorp and Ernst Cassirer), as well as those of several minor figures (August Stadler, Kurd Lasswitz, Dimitry Gawronsky, etc.), this paper shows that Das Princip der Infinitesimal-Methode is a unicum in the history of philosophy: it represents a strange case of an unsuccessful book’s enduring influence. The “puzzle of Cohen’s Infinitesimalmethode,” as we will call it, can be solved by looking beyond the scholarly results of the book, and instead focusing on the style of philosophy it exemplified. Moreover, the paper shows that Cohen never supported, but instead explicitly opposed, the doctrine of the centrality of the ‘concept of function’, with which Marburg Neo-Kantianism is usually associated. Long Draft 24/12/2015 Introduction Hermann Cohen’s Das Princip der Infinitesimal-Methode (Cohen, 1883) was undoubtedly an unsuccessful book. Its devastating reviews are customarily mentioned in the literature, but less known and perhaps more significant, is the lukewarm, and sometimes even hostile, reception the book received from Cohen’s early sympathizers. Some members of the group dissented publicly, while others expressed their discomfort in private correspondence. -
Remarks on Non-Euclidean Geometry in the Austro-Hungarian Empire Uwagi O Geometrii Nieeuklidesowej W Monarchii Austro-Węgiersk
TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE FUNDAMENTAL SCIENCES NAUKI PODSTAWOWE 1-NP/2014 KATALIN MUNKÁCSY* REMARKS ON NON-EUCLIDEAN GEOMETRY IN THE AUSTRO-HUNGARIAN EMPIRE UWAGI O GEOMETRII NIEEUKLIDESOWEJ W MONARCHII AUSTRO-WĘGIERSKIEJ Abstract Since 1800s, Central European mathematicians have achieved great results in hyperbolic geometry. The paper is devoted to brief description of the background as well as history of these results. Keywords: Austro-Hungarian Empire, history of hyperbolic geometry Streszczenie Od XIX w. matematycy w Europie Środkowo-Wschodniej osiągali znaczące wyniki w geome- trii hiperbolicznej. Niniejszy artykuł zarysowuje tło i historię tych wyników. Słowa kluczowe: Monarchia Austro-Węgierska, historia geometrii hiperbolicznej * Katalin Munkácsy, ELTE TTK Matematikatanítási és Módszertani Központ, Budapest. This paper was prepared for publication by S. Domoradzki and M. Stawiska-Friedland on the basis of the author’s draft. 178 1. Introduction The Bolyai geometry is an important historical phenomenon in mathematics, and a timely research topic with potential applications. I will say a few words about these topics here. I would like to say first something about the expression “Bolyai geometry”. Officially the hyperbolic geometry is called B-L geometry, but this form is not really used anywhere. In 1894 Poincaré was the chairman of the committee that compiled the bibliography of hyperbolic geometry. The title was originally Lobachevsky’s Geometrie. However, it was changed to Geometrie de Bolyai et Lobachevsky – as a result of Hungarian mathematicians’ argumentations (see, e.g. [16]). The most common name is “hyperbolic geometry”; sometimes “Bolyai-Lobachevsky- Gauss” is used. In the Russian-speaking world the common name is ‘Lobachevski’s geometry’, while in Hungary it is called “Bolyai geometry”. -
Elementary Properties of Ordered Abelian Groups
ELEMENTARY PROPERTIES OF ORDERED ABELIAN GROUPS BY ABRAHAM ROBINSON and ELIAS ZAKON Introduction. A complete classification of abelian groups by their ele- mentary properties (i.e. properties that can be formalized in the lower predi- cate calculus) was given by Szmielew [9]. No such attempt, however, has so far been made with respect to ordered groups. In the present paper the classification by elementary properties will be carried out for all archimedean ordered abelian groups and, moreover, for a certain more general class of groups which we shall call regularly ordered. Simultaneously, necessary and sufficient conditions will be established for two such groups to be elementarily equivalent, i.e. to have all their elementary properties in common (see Theo- rem 4.7). By a complete classification of a class of groups we mean its partition into disjoint subclasses in such a way that two groups belong to one subclass if, and only if, they are elementarily equivalent. This goal will be attained by setting up a series of (finite or infinite) complete systems of axioms, each sys- tem defining a certain subclass of ordered abelian groups. The notation and terminology of [8] will be used throughout. In par- ticular, the concept of model-completeness introduced in [8] and [7] will be applied. A novelty feature of the present paper is that the method based on model-completeness will be combined with what we shall call "adjunction of new relations." To illustrate the usefulness of the method, we shall also apply it to give new simplified proofs of some theorems by Langford and Tarski on the completeness of certain systems of axioms referring to ordered sets. -
RM Calendar 2019
Rudi Mathematici x3 – 6’141 x2 + 12’569’843 x – 8’575’752’975 = 0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2004, A1 (1871) Federigo Enriques RM084 Basketball star Shanille O’Keal’s team statistician (1871) Gino Fano keeps track of the number, S( N), of successful free 6 S (1807) Jozeph Mitza Petzval throws she has made in her first N attempts of the (1841) Rudolf Sturm season. Early in the season, S( N) was less than 80% of 2 7 M (1871) Felix Edouard Justin Émile Borel N, but by the end of the season, S( N) was more than (1907) Raymond Edward Alan Christopher Paley 80% of N. Was there necessarily a moment in between 8 T (1888) Richard Courant RM156 when S( N) was exactly 80% of N? (1924) Paul Moritz Cohn (1942) Stephen William Hawking Vintage computer definitions 9 W (1864) Vladimir Adreievich Steklov Advanced User : A person who has managed to remove a (1915) Mollie Orshansky computer from its packing materials. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Jokes 11 F (1545) Guidobaldo del Monte RM120 In modern mathematics, algebra has become so (1707) Vincenzo Riccati important that numbers will soon only have symbolic (1734) Achille Pierre Dionis du Sejour meaning. -
Positivity and Sums of Squares: a Guide to Recent Results
POSITIVITY AND SUMS OF SQUARES: A GUIDE TO RECENT RESULTS CLAUS SCHEIDERER Abstract. This paper gives a survey, with detailed references to the liter- ature, on recent developments in real algebra and geometry concerning the polarity between positivity and sums of squares. After a review of founda- tional material, the topics covered are Positiv- and Nichtnegativstellens¨atze, local rings, Pythagoras numbers, and applications to moment problems. In this paper I will try to give an overview, with detailed references to the literature, of recent developments, results and research directions in the field of real algebra and geometry, as far as they are directly related to the concepts mentioned in the title. Almost everything discussed here (except for the first section) is less than 15 years old, and much of it less than 10 years. This illustrates the rapid development of the field in recent years, a fact which may help to excuse that this article does not do justice to all facets of the subject (see more on this below). Naturally, new results and techniques build upon established ones. Therefore, even though this is a report on recent progress, there will often be need to refer to less recent work. Sect. 1 of this paper is meant to facilitate such references, and also to give the reader a coherent overview of the more classical parts of the field. Generally, this section collects fundamental concepts and results which date back to 1990 and before. (A few more pre-1990 results will be discussed in later sections as well.) It also serves the purpose of introducing and unifying matters of notation and definition. -
Information to Users
INFORMATION TO USERS This manuscrit has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The qnali^ of this reproduction is dependent upon the qnali^ of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins^ and inqnoper alignment can adversefy afreet reproductioiL In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beghming at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photogrsphs included in the original manuscript have been reproduced xerographically in this copy. Higher quali^ 6" x 9" black and white photographic prints are available for aiy photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313.'761-4700 800/521-0600 ARISTOHE ON MATHEMATICAL INFINITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Theokritos Kouremenos, B.A., M.A ***** The Ohio State University 1995 Dissertation Committee; Approved by D.E.