Regularly Ordered Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hahn Embedding Theorem for a Class of Residuated Semigroups
Sandor´ Jenei The Hahn embedding theorem for a class of residuated semigroups ∗ Abstract. Hahn's embedding theorem asserts that linearly ordered abelian groups embed in some lexicographic product of real groups. Hahn's theorem is generalized to a class of residuated semigroups in this paper, namely, to odd involutive commutative residuated chains which possess only finitely many idempotent elements. To this end, the partial sublex product construction is introduced to construct new odd involutive commutative residuated lattices from a pair of odd involutive commutative residuated lattices, and a representation theorem for odd involutive commutative residuated chains which possess only finitely many idempotent elements, by means of linearly ordered abelian groups and the partial sublex product construction is presented. Keywords: Involutive residuated lattices, construction, representation, abelian groups, Hahn-type embedding 1. Introduction Hahn's celebrated embedding theorem states that every linearly ordered abelian group G can be embedded as an ordered subgroup into the Hahn !H product ×Ω R, where R is the additive group of real numbers (with its standard order), Ω is the set of archimedean equivalence classes of G (or- !H dered naturally by the dominance relation), ×Ω R is the set of all functions from Ω to R (alternatively the set of all vectors with real elements and with coordinates taken from Ω) which vanish outside a well-ordered set, endowed with a lexicographical order [13]. Briefly, every linearly ordered abelian group can be represented as a group of real-valued functions on a totally ordered set. By weakening the linearly ordered hypothesis, Conrad, Harvey, and Holland generalized Hahn's theorem for lattice-ordered abelian groups in [6] by showing that any abelian `-group can be represented as a group of real-valued functions on a partially ordered set. -
Sums of Dilates in Ordered Groups
SUMS OF DILATES IN ORDERED GROUPS ALAIN PLAGNE AND SALVATORE TRINGALI Abstract. We address the “sums of dilates problem” by looking for non-trivial lower bounds on sumsets of the form k · X + l · X, where k and l are non-zero integers and X is a subset of a possibly non-abelian group G (written additively). In particular, we investigate the extension of some results so far known only for the integers to the context of torsion-free or linearly orderable groups, either abelian or not. 1. Introduction One of the main problems in additive combinatorics is to derive non-trivial bounds on the cardinality of Minkowski sumsets (usually called just sumsets), see [22, Chap- ter 1] for the basic terminology and notation. In this respect, the inequality: |X + Y |≥|X| + |Y | − 1, (1) where X and Y are non-empty subsets of the additive group of the integers, serves as a cornerstone and suggests at least two possible directions of research: (i) extending (1) to broader contexts, e.g. more general groups or possibly non- cancellative semigroups (abelian or not), see [30] and references therein; (ii) improving (1) for special pairs of sets (X,Y ). Having this in mind, let G be a fixed group, which needs not be abelian, but we write additively (unless a statement to the contrary is made). For X a subset of G and k an integer, we define k · X = {kx : x ∈ X}, ·k arXiv:1403.0934v3 [math.CO] 16 Feb 2015 and we call k · X a dilate of X (we use X in place of k · X when G is written multiplicatively). -
EXTENSIONS of ORDERED GROUPS and SEQUENCE COMPLETION(I) by CHARLES HOLLAND^)
EXTENSIONS OF ORDERED GROUPS AND SEQUENCE COMPLETION(i) BY CHARLES HOLLAND^) 1. Introduction. In this paper the relationships between certain extensions of totally (linearly) ordered groups (o-groups) are studied. The additive notation is employed although the groups are not, in general, assumed to be abelian. The four types of extensions considered are defined as follows : Let G S H be o-groups. (a) H is an a-extension of G if for every 0 < he H there exists ge G and a positive integer n such that h ^ g ^ nh. (b) H is a b-extension of G if for every 0 < n e H there exists g e G and a positive integer n such that g ^ n :£ ng. (c) H is a c-extension of G if for every 0 < h e Ü there exists g e G such that for all integers n, n(h —g) < h. (t) H is a t-extension of G if for every h,h',h"eH with h < h' < h" there exists g e G such that h < g < h". If xe {a, b,c,f}, G is x-closed if G has no proper x-extensions. The connect- ing notion between the different types of extensions is that of sequences in o- groups; of particular importance are cauchy sequences (definition in §2) and pseudo sequences (definition in §3). Several authors have discussed similar con- cepts, but in different or more special cases. Cohen and Goffman [3 ; 4] consider cauchy sequences in abelian groups; Everett and Ulam [8] consider countable cauchy sequences; Banaschewski [1] deals with cauchy filters in partially ordered groups; Gravett [9] relates pseudo sequences to c-extensions in divisible abelian groups. -
Elementary Properties of Ordered Abelian Groups
ELEMENTARY PROPERTIES OF ORDERED ABELIAN GROUPS BY ABRAHAM ROBINSON and ELIAS ZAKON Introduction. A complete classification of abelian groups by their ele- mentary properties (i.e. properties that can be formalized in the lower predi- cate calculus) was given by Szmielew [9]. No such attempt, however, has so far been made with respect to ordered groups. In the present paper the classification by elementary properties will be carried out for all archimedean ordered abelian groups and, moreover, for a certain more general class of groups which we shall call regularly ordered. Simultaneously, necessary and sufficient conditions will be established for two such groups to be elementarily equivalent, i.e. to have all their elementary properties in common (see Theo- rem 4.7). By a complete classification of a class of groups we mean its partition into disjoint subclasses in such a way that two groups belong to one subclass if, and only if, they are elementarily equivalent. This goal will be attained by setting up a series of (finite or infinite) complete systems of axioms, each sys- tem defining a certain subclass of ordered abelian groups. The notation and terminology of [8] will be used throughout. In par- ticular, the concept of model-completeness introduced in [8] and [7] will be applied. A novelty feature of the present paper is that the method based on model-completeness will be combined with what we shall call "adjunction of new relations." To illustrate the usefulness of the method, we shall also apply it to give new simplified proofs of some theorems by Langford and Tarski on the completeness of certain systems of axioms referring to ordered sets. -
The Computable Dimension of Ordered Abelian Groups
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Advances in Mathematics 175 (2003) 102–143 http://www.elsevier.com/locate/aim The computable dimension of ordered abelian groups Sergey S. Goncharov,a Steffen Lempp,b and Reed Solomonc,* a Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Russia b Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA c Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA Received 27 February 2001; accepted 14 February 2002 Communicated by H. Jerome Keisler Abstract Let G be a computable ordered abelian group. We show that the computable dimension of G is either 1 or o; that G is computably categorical if and only if it has finite rank, and that if G has only finitely many Archimedean classes, then G has a computable presentation which admits a computable basis. r 2003 Elsevier Science (USA). All rights reserved. MSC: 03D; 06F Keywords: Computability; Computable model theory; Ordered groups 1. Introduction In this article, we examine countable ordered abelian groups from the perspective of computable algebra. We begin with the definition and some examples of ordered abelian groups. Definition 1.1. An ordered abelian group is a pair ðG; pGÞ; where G is an abelian group and pG is a linear order on G such that if a pG b; then a þ g pG b þ g for all gAG: *Correspondingauthor. E-mail addresses: [email protected] (S.S. Goncharov), [email protected] (S. Lempp), [email protected] (R. -
Summary on Non-Archimedean Valued Fields 3
Contemporary Mathematics Volume 704, 2018 http://dx.doi.org/10.1090/conm/704/14158 Summary on non-Archimedean valued fields Angel Barr´ıa Comicheo and Khodr Shamseddine Abstract. This article summarizes the main properties of ultrametric spaces, valued fields, ordered fields and fields with valuations of higher rank, highlight- ing their similarities and differences. The most used non-Archimedean valued fields are reviewed, like a completion in the case of the p-adic numbers fields and the Levi-Civita fields, or like an algebraic closure as is sometimes the case of the Puiseux series fields. Also a study of spherically complete valued fields is presented and their characterization as maximally complete fields is given where the Hahn fields and the Mal’cev-Neumann fields (their p-adic ana- logues) play an important role as “spherical completions”. Finally several of the metric, topological, algebraic and order properties of the most used non- Archimedean valued fields are collected in a catalog where we can appreciate the analogy between fields that have the same characteristic as their residue class fields and fields that do not satisfy this property. Introduction. When a graduate student or any mathematician in general begin their jour- ney in non-Archimedean Analysis, the freedom of choice for the base valued field presents different cases to consider, most of which do not occur when we work with the fields of real or complex numbers. The existence of discrete valuations, or the possible non-existence of vectors of norm 1 sometimes lead to the use of new procedures for proofs of results in Functional Analysis. -
Affine Completness of Projectable Lattice Ordered Groups
Czechoslovak Mathematical Journal Ján Jakubík; Mária Csontóová Affine completness of projectable lattice ordered groups Czechoslovak Mathematical Journal, Vol. 48 (1998), No. 2, 359–363 Persistent URL: http://dml.cz/dmlcz/127422 Terms of use: © Institute of Mathematics AS CR, 1998 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 48 (123) (1998), 359–363 AFFINE COMPLETNESS OF PROJECTABLE LATTICE ORDERED GROUPS Ján Jakubík and Mária Csontóová,Košice (Received November 10, 1995) Affine completeness of algebraic systems was studied in [3], [5], [6], [8]–[13]. In the present paper we prove that a nonzero abelian linearly ordered group fails to be affine complete. Then by applying Proposition 2.2, [9] we obtain that an abelian projectable lattice ordered group G is affine complete if and only if G = 0 ;thisis { } a generalization of Theorem (A) from [9]. 1. Preliminaries For lattice ordered groups we apply the usual terminology and notation (cf., e.g., [1]). Let A be a universal algebra. We denote by Con A the set of all congruences of A.Next,letP (A)bethesetofallpolynomialsofA. Let N be the set of all positive integers and n N. A mapping f : An A is ∈ → said to be compatible with Con A if, whenever Θ Con A, a ,b A and a Θb for ∈ i i ∈ i i i =1, 2,...,n,thenf(a1,...,an)Θf(b1,...,bn). -
Additive Representation of Separable Preferences Over Infinite Products
Munich Personal RePEc Archive Additive representation of separable preferences over infinite products Pivato, Marcus Department of Mathematics, Trent University 19 January 2011 Online at https://mpra.ub.uni-muenchen.de/28262/ MPRA Paper No. 28262, posted 20 Jan 2011 06:32 UTC Additive representation of separable preferences over infinite products Marcus Pivato, Trent University, Canada January 19, 2011 Abstract Let X be a set of states, and let I be an infinite indexing set. Any separable, permutation-invariant preference order () on X I admits an additive representa- tion. That is: there exists a linearly ordered abelian group R and a ‘utility function’ u : X −→R such that, for any x, y ∈ X I which differ in only finitely many coordi- nates, we have x y if and only if i∈I [u(xi) − u(yi)] ≥ 0. If () also satisfies a weak continuity condition, then, for any x, y ∈ X I , we have x y if and only if ∗ ∗ ∗ P i∈I u(xi) ≥ i∈I u(yi). Here, i∈I u(xi) represents a ‘nonstandard sum’ tak- ing values in a linearly ordered abelian group ∗R, which is an ultrapower extension P P P of R. These results are applicable to infinite-horizon intertemporal choice, choice under uncertainty, and variable-population social choice. 1 Main results Let X be a set of states, and let I be an infinite indexing set. An element x ∈ X I assigns I a state xi to each i ∈I. A preference order over X has at least three interpretations: (i) Intertemporal choice. I represents a ‘time-stream’ (an infinite sequence of moments in time e.g. -
Or Natural) Density D(A)Forsetsa of Natural Numbers Is a Central Tool in Number Theory: |A ∩ [1,N]| D(A) = Lim (Provided the Limit Exists
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 8, August 2010, Pages 2657–2665 S 0002-9939(10)10351-7 Article electronically published on April 1, 2010 FINE ASYMPTOTIC DENSITIES FOR SETS OF NATURAL NUMBERS MAURO DI NASSO (Communicated by Julia Knight) Abstract. By allowing values in non-Archimedean extensions of the unit in- terval, we consider finitely additive measures that generalize the asymptotic density. The existence of a natural class of such “fine densities” is independent of ZFC. Introduction The asymptotic (or natural) density d(A)forsetsA of natural numbers is a central tool in number theory: |A ∩ [1,n]| d(A) = lim (provided the limit exists). n→∞ n In many applications, it is useful to consider suitable extensions of d that are defined for all subsets. Among the most relevant examples, there are the upper and lower density,theSchnirelmann density,andtheupper Banach density (see e.g. [9], [7], [13]). Several authors investigated the general problem of densities, i.e. the possibility of constructing finitely additive measures that extend asymptotic density to all subsets of the natural numbers and that satisfy some additional properties (see e.g. [2], [11], [12] and [1]). Recently, generalized probabilities have been introduced that take values into non-Archimedean rings (see e.g. [8] and [10]). In this paper we pursue the idea of refining the notion of density by allowing values into a non-Archimedean extension of the unit interval. To this aim, we introduce a notion of “fine density” as a suitable finitely additive function on P(N) that gives a non-zero (infinitesimal) measure even to singletons. -
Formal Power Series with Cyclically Ordered Exponents
Formal power series with cyclically ordered exponents M. Giraudet, F.-V. Kuhlmann, G. Leloup January 26, 2003 Abstract. We define and study a notion of ring of formal power series with expo- nents in a cyclically ordered group. Such a ring is a quotient of various subrings of classical formal power series rings. It carries a two variable valuation function. In the particular case where the cyclically ordered group is actually totally ordered, our notion of formal power series is equivalent to the classical one in a language enriched with a predicate interpreted by the set of all monomials. 1 Introduction Throughout this paper, k will denote a commutative ring with unity. Further, C will denote a cyclically ordered abelian group, that is, an abelian group equipped with a ternary relation ( ; ; ) which has the following properties: · · · (1) a; b; c, (a; b; c) a = b = c = a (2) 8a; b; c, (a; b; c) ) (b;6 c; a6) 6 8 ) (3) c C, (c; ; ) is a strict total order on C c . 8 2 · · n f g (4) ( ; ; ) is compatible, i.e., a; b; c; d; (a; b; c) (a + d; b + d; c + d). · · · 8 ) For all c C, we will denote by the associated order on C with first element c. For 2 ≤c Ø = X C, minc X will denote the minimum of (X; c), if it exists. 6 For ⊂instance, any totally ordered group is cyclically≤ ordered with respect to the fol- lowing ternary relation: (a; b; c) iff a < b < c or b < c < a or c < a < b. -
Reverse Mathematics and Fully Ordered Groups
Reverse mathematics and fully ordered groups Reed Solomon August 28, 2003 1 Introduction The fundamental question in reverse mathematics is to determine which set existence axioms are required to prove particular theorems of ordinary mathematics. In this case, we consider theorems about ordered groups. While this section gives some background material on reverse mathematics, it is not intended as an introduction to the subject. The reader who is unfamiliar with this area is referred to Simpson (1999) or Friedman et al. (1983) for more details. This article is, however, self contained with respect to the material on ordered groups. We will be concerned with three subsystems of second order arithmetic: RCA0, WKL0 0 and ACA0. RCA0 contains the ordered semiring axioms for the natural numbers plus ∆1 0 comprehension, Σ1 formula induction and the set induction axiom ∀X 0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X) → ∀n(n ∈ X). 0 The ∆1 comprehension scheme consists of all axioms of the form ∀n ϕ(n) ↔ ψ(n) → ∃X ∀n n ∈ X ↔ ϕ(n) 0 0 where ϕ is a Σ1 formula, ψ is a Π1 formula and X does not occur freely in either ϕ or ψ. The 0 0 Σ1 formula induction scheme contains the following axiom for each Σ1 formula ϕ, ϕ(0) ∧ ∀nϕ(n) → ϕ(n + 1) → ∀nϕ(n). We will use N to denote the set defined by the formula x = x. Notice that in the comprehension scheme ϕ may contain free set variables other than X as parameters. The computable sets form the minimum ω-model of RCA0 and any ω-model of RCA0 is closed under Turing reducibility. -
Mappings Between Distance Sets Or Spaces
Mappings between distance sets or spaces Vom Fachbereich Mathematik der Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Dipl.-Math. Jobst Heitzig geboren am 17. Juli 1972 in Hannover 2003 diss.tex; 17/02/2003; 8:34; p.1 Referent: Prof. Dr. Marcel Erné Korreferent: Prof. Dr. Hans-Peter Künzi Tag der Promotion: 16. Mai 2002 diss.tex; 17/02/2003; 8:34; p.2 Zusammenfassung Die vorliegende Arbeit hat drei Ziele: Distanzfunktionen als wichtiges Werkzeug der allgemeinen Topologie wiedereinzuführen; den Gebrauch von Distanzfunktionen auf den verschiedensten mathematischen Objekten und eine Denkweise in Begriffen der Abstandstheorie anzuregen; und schliesslich spezifischere Beiträge zu leisten durch die Charakterisierung wichtiger Klassen von Abbildungen und die Verallgemeinerung einiger topologischer Sätze. Zunächst werden die Konzepte des ,Formelerhalts‘ und der ,Übersetzung von Abständen‘ benutzt, um interessante ,nicht-topologische‘ Klassen von Abbildungen zu finden, was zur Charakterisierung vieler bekannter Arten von Abbildungen mithilfe von Abstandsfunktionen führt. Nachdem dann eine ,kanonische‘ Methode zur Konstruktion von Distanzfunktionen angegeben wird, entwickele ich einen geeigneten Begriff von ,Distanzräumen‘, der allgemein genug ist, um die meisten topologischen Strukturen induzieren zu können. Sodann werden gewisse Zusammenhänge zwischen einigen Arten von Abbildungen bewiesen, wie z. B. dem neuen Konzept ,streng gleichmässiger Stetigkeit‘. Es folgt eine neuartige