Summary on Non-Archimedean Valued Fields 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On X-Normed Spaces and Operator Theory on C 0 Over a Field with A
ON X-NORMED SPACES AND OPERATOR THEORY ON c0 OVER A FIELD WITH A KRULL VALUATION OF ARBITRARY RANK by Angel Barría Comicheo A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Mathematics University of Manitoba Winnipeg Copyright c 2018 by Angel Barría Comicheo Abstract Between 2013 and 2015 Aguayo et al. developed an operator theory on the space c0 of null sequences in the complex Levi-Civita field C by defining an inner product on c0 that induces the supremum norm on c0 and then studying compact and self- adjoint operators on c0, thus presenting a striking analogy between c0 over C and the Hilbert space `2 over C. In this thesis, we try to obtain these results in the most general case possible by considering a base field with a Krull valuation taking values in an arbitrary commutative group. This leads to the concept of X-normed spaces, which are spaces with norms taking values in a totally ordered set X not necessarily embedded in R. Two goals are considered in the thesis: (1) to present and contribute to a theory of X-normed spaces, and (2) to develop an operator theory on c0 over a field with a Krull valuation of arbitrary rank. In order to meet the goal (1), a systematic study of valued fields, G-modules and X-normed spaces is conducted in order to satisfy the generality of the settings required. For the goal (2), we identify the major differences between normed spaces over fields of rank 1 and X-normed spaces over fields of higher rank; and we try to find the right conditions for which the techniques employed in the rank-1 case can be used in the higher rank case. -
Amplicon Analysis I
Amplicon Analysis I Eduardo Pareja-Tobes, Raquel Tobes Oh no sequences! research group, Era7 Bioinformatics Plaza de Campo Verde, 3, 18001 Granada, Spain September 16, 2019 Abstract Here we present 1. a model for amplicon sequencing 2. a definition of the best assignment of a read to a set of reference sequences 3. strategies and structures for indexing reference sequences and computing the best assign- ments of a set of reads efficiently, based on (ultra)metric spaces and their geometry The models, techniques, and ideas are particularly relevant to scenarios akin to 16S taxonomic profiling, where both the number of reference sequences and the read diversity is considerable. Keywords bioinformatics, NGS, DNA sequencing, DNA sequence analysis, amplicons, ultrametric spaces, in- dexing. Corresponding author Eduardo Pareja-Tobes [email protected] 1 1 Reads, Amplicons, References, Assignments In this section we will define what we understand as reads, amplicons, references, and the best as- signment of a read with respect to a set of references. In our model the reads are a product of the probability distribution for the 4 bases (A, C, G and T) in each position of the sequence. 푛−1 Definition 1.0.1 Read. A read 푅 of length 푛 is a product ∏푖=0 푅푖 of 푛 probability distributions on Σ = {퐴, 푇 , 퐶, 퐺}. We will denote the length of a read as |푅|. The corresponding probability mass function is thus defined on the space Σ푛 of sequences in Σ of 푛−1 푛 length 푛, the domain of 푅. The probability that 푅 assigns to a sequence 푥 = (푥푖)푖=0 ∶ Σ is 푛−1 푅(푥) = ∏ 푅푖(푥푖) 푖=0 Remark 1.0.2. -
Arxiv:1810.03128V2 [Math.MG]
FINITE ULTRAMETRIC BALLS O. DOVGOSHEY Abstract. The necessary and sufficient conditions under which a given family F of subsets of finite set X coincides with the family BX of all balls generated by some ultrametric d on X are found. It is shown that the representing tree of the ultrametric space (BX , dH ) with the Hausdorff distance dH can be obtained from the representing tree TX of ultrametric space (X, d) by adding a leaf to every internal vertex of TX . 1. Introduction. Balls in ultrametric space The main object of research in this paper is the set of all balls in a given finite ultrametric space. The theory of ultrametric spaces is closely connected with various directions of studies in mathematics, physics, linguistics, psychology and computer science. Different prop- erties of ultrametric spaces are described at [3, 7, 11–14, 20,21,28,31– 38,42–46]. The use of trees and tree-like structures gives a natural lan- guage for description of ultrametric spaces. For the relationships between these spaces and the leaves or the ends of certain trees see [1,2,5,8,19,22,23,25–27,38]. In particular, a convenient representa- tion of finite ultrametric spaces (X,d) by monotone canonical trees was found by V. Gurvich and M. Vyalyi [22]. A simple algorithm having a clear geometric interpretation was proposed in [40] for constructing monotone canonical trees. Following [40] we will say that these trees arXiv:1810.03128v2 [math.MG] 23 Mar 2019 are representing trees of spaces (X,d). The present paper can be con- sidered as a development of studies initiated at [22] and continued at [10,16,18,39–41]. -
Path Integrals on Ultrametric Spaces by Alan Blair B.Sc, B.A
I Path Integrals on Ultrametric Spaces by Alan Blair B.Sc, B.A. Hons.) University of Sydney 19885 1989 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology May 1994 1994 Alan Blair. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or 1n Dart. Signature of, Author. .. A-V . Department of Mat4emati _AprilN. Certified by. ,' Gian-Carlo Rota Professor of Mathematics M.I.T. Thesis Advisor Accepted by . q -. ! .; ".. -. , . 1 - L Scfencp David Vogan Chair DepaTtmental Committee on Graduate Studies iFf.7-7r) t4F7171 AUG 1 994 PATH INTEGRALS ON ULTRAMETRIC SPACES by ALAN BLAIR Submitted to the Department of Mathematics on April 29, 1994 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT A framework for the study of path integrals on ad6lic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its ade'le ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the ade'le ring of the rationals. Thesis Advisors: Andrew Lesniewski, Professor of Physics (Harvard) Arthur JaHe, Professor of Mathematics (Harvard) 3 Acknowledgments To my father, who first introduced me to the lofty heights of mathematics, and my mother and brother, who kept me in touch with the real world below. -
MATH 614, Spring 2018 [3Mm] Dynamical Systems and Chaos
MATH 614 Dynamical Systems and Chaos Lecture 7: Symbolic dynamics (continued). Symbolic dynamics Given a finite set A (an alphabet), we denote by ΣA the set of all infinite words over A, i.e., infinite sequences s =(s1s2 ... ), si ∈A. For any finite word w over the alphabet A, that is, w = s1s2 ... sn, si ∈A, we define a cylinder C(w) to be the set of all infinite words s ∈ ΣA that begin with w. The topology on ΣA is defined so that open sets are unions of cylinders. Two infinite words are considered close in this topology if they have a long common beginning. The shift transformation σ : ΣA → ΣA is defined by σ(s0s1s2 ... )=(s1s2 ... ). This transformation is continuous. The study of the shift and related transformations is called symbolic dynamics. Properties of the shift • The shift transformation σ :ΣA → ΣA is continuous. • An infinite word s ∈ ΣA is a periodic point of the shift if and only if s = www... for some finite word w. • An infinite word s ∈ ΣA is an eventually periodic point of the shift if and only if s = uwww... for some finite words u and w. • The shift σ has periodic points of all (prime) periods. Dense sets Definition. Suppose (X , d) is a metric space. We say that a subset E ⊂ X is everywhere dense (or simply dense) in X if for every x ∈ X and ε> 0 there exists y ∈ E such that d(y, x) <ε. More generally, suppose X is a topological space. We say that a subset E ⊂ X is dense in X if E intersects every nonempty open subset of X . -
Hierarchical Overlapping Clustering of Network Data Using Cut Metrics Fernando Gama, Santiago Segarra, and Alejandro Ribeiro
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS (ACCEPTED) 1 Hierarchical Overlapping Clustering of Network Data Using Cut Metrics Fernando Gama, Santiago Segarra, and Alejandro Ribeiro Abstract—A novel method to obtain hierarchical and overlap- degrees that may be present. Hierarchical clustering solves ping clusters from network data – i.e., a set of nodes endowed this issue by providing a collection of partitions, indexed with pairwise dissimilarities – is presented. The introduced by a resolution parameter, that can be set by the user to method is hierarchical in the sense that it outputs a nested collection of groupings of the node set depending on the resolution determine the extent up to which nodes are considered similar or degree of similarity desired, and it is overlapping since it or different [9]. In other words, each partition in the collection allows nodes to belong to more than one group. Our construction reflects a different degree of similarity between the nodes, is rooted on the facts that a hierarchical (non-overlapping) ranging from considering all nodes different, to considering clustering of a network can be equivalently represented by all nodes similar. Examples of hierarchical clustering methods a finite ultrametric space and that a convex combination of ultrametrics results in a cut metric. By applying a hierarchical are UPGMA [10], Ward’s method [11], complete [12] or single (non-overlapping) clustering method to multiple dithered versions linkage [13]. of a given network and then convexly combining the resulting However, hierarchical methods still have a major limitation, ultrametrics, we obtain a cut metric associated to the network namely, that nodes are assigned to one and only one category of interest. -
The Range of Ultrametrics, Compactness, and Separability
The range of ultrametrics, compactness, and separability Oleksiy Dovgosheya,∗, Volodymir Shcherbakb aDepartment of Theory of Functions, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine bDepartment of Applied Mechanics, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine Abstract We describe the order type of range sets of compact ultrametrics and show that an ultrametrizable infinite topological space (X, τ) is compact iff the range sets are order isomorphic for any two ultrametrics compatible with the topology τ. It is also shown that an ultrametrizable topology is separable iff every compatible with this topology ultrametric has at most countable range set. Keywords: totally bounded ultrametric space, order type of range set of ultrametric, compact ultrametric space, separable ultrametric space 2020 MSC: Primary 54E35, Secondary 54E45 1. Introduction In what follows we write R+ for the set of all nonnegative real numbers, Q for the set of all rational number, and N for the set of all strictly positive integer numbers. Definition 1.1. A metric on a set X is a function d: X × X → R+ satisfying the following conditions for all x, y, z ∈ X: (i) (d(x, y)=0) ⇔ (x = y); (ii) d(x, y)= d(y, x); (iii) d(x, y) ≤ d(x, z)+ d(z,y) . + + A metric space is a pair (X, d) of a set X and a metric d: X × X → R . A metric d: X × X → R is an ultrametric on X if we have d(x, y) ≤ max{d(x, z), d(z,y)} (1.1) for all x, y, z ∈ X. -
Elementary Properties of Ordered Abelian Groups
ELEMENTARY PROPERTIES OF ORDERED ABELIAN GROUPS BY ABRAHAM ROBINSON and ELIAS ZAKON Introduction. A complete classification of abelian groups by their ele- mentary properties (i.e. properties that can be formalized in the lower predi- cate calculus) was given by Szmielew [9]. No such attempt, however, has so far been made with respect to ordered groups. In the present paper the classification by elementary properties will be carried out for all archimedean ordered abelian groups and, moreover, for a certain more general class of groups which we shall call regularly ordered. Simultaneously, necessary and sufficient conditions will be established for two such groups to be elementarily equivalent, i.e. to have all their elementary properties in common (see Theo- rem 4.7). By a complete classification of a class of groups we mean its partition into disjoint subclasses in such a way that two groups belong to one subclass if, and only if, they are elementarily equivalent. This goal will be attained by setting up a series of (finite or infinite) complete systems of axioms, each sys- tem defining a certain subclass of ordered abelian groups. The notation and terminology of [8] will be used throughout. In par- ticular, the concept of model-completeness introduced in [8] and [7] will be applied. A novelty feature of the present paper is that the method based on model-completeness will be combined with what we shall call "adjunction of new relations." To illustrate the usefulness of the method, we shall also apply it to give new simplified proofs of some theorems by Langford and Tarski on the completeness of certain systems of axioms referring to ordered sets. -
The Computable Dimension of Ordered Abelian Groups
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Advances in Mathematics 175 (2003) 102–143 http://www.elsevier.com/locate/aim The computable dimension of ordered abelian groups Sergey S. Goncharov,a Steffen Lempp,b and Reed Solomonc,* a Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Russia b Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA c Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA Received 27 February 2001; accepted 14 February 2002 Communicated by H. Jerome Keisler Abstract Let G be a computable ordered abelian group. We show that the computable dimension of G is either 1 or o; that G is computably categorical if and only if it has finite rank, and that if G has only finitely many Archimedean classes, then G has a computable presentation which admits a computable basis. r 2003 Elsevier Science (USA). All rights reserved. MSC: 03D; 06F Keywords: Computability; Computable model theory; Ordered groups 1. Introduction In this article, we examine countable ordered abelian groups from the perspective of computable algebra. We begin with the definition and some examples of ordered abelian groups. Definition 1.1. An ordered abelian group is a pair ðG; pGÞ; where G is an abelian group and pG is a linear order on G such that if a pG b; then a þ g pG b þ g for all gAG: *Correspondingauthor. E-mail addresses: [email protected] (S.S. Goncharov), [email protected] (S. Lempp), [email protected] (R. -
Math 731 Homework 9
Math 731 Homework 9 Austin Mohr March 29, 2010 1 Extra Problem 1 Lemma 1.1. Every point of a closed ball in an ultrametric space is a center. Proof. Let (X; ρ) be an ultrametric space, and let B(a; ) denote the closed ball around a 2 X of radius > 0 (i.e. the set fy 2 X j ρ(a; y) ≤ g). Let b 2 B(a; ) and let x 2 B(b; ). It follows that ρ(a; x) ≤ maxfρ(a; b); ρ(b; x)g ≤ , and so x 2 B(a; ). Hence, B(b; ) ⊂ B(a; ), and a similar proof gives the reverse inclusion. Therefore, B(a; ) = B(b; ), and so both a and b are centers. Proposition 1.2. Every ultrametric space has a base of clopen sets. Proof. Let X be an ultrametric space and let F denote the collection of all closed balls in X. Evidently, F covers X. Observe next that, for any two balls of F, either they are disjoint or one is contained in the other. To see this, let F1;F2 2 F with x 2 F1 \ F2 (such an x exists if F1 and F2 are not disjoint). Now, F1 has the form B(a; 1) and F2 has the form B(b; 2). Without loss of generality, let 1 ≤ 2. By the lemma, F1 = B(a; 1) and F2 = B(a; 2), and so F1 ⊂ F2. From this fact, we conclude that F is a base for X (any F1 and F2 with nontrivial intersection has one containing the other). -
Utrametric Diffusion Model for Spread of Covid-19 in Socially Clustered
medRxiv preprint doi: https://doi.org/10.1101/2020.07.15.20154419; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Utrametric diffusion model for spread of 2 covid-19 in socially clustered population: Can 3 herd immunity be approached in Sweden? 4 Andrei Khrennikov Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences V¨axj¨o,SE-351 95, Sweden 5 July 15, 2020 6 Abstract 7 We present a new mathematical model of disease spread reflecting 8 specialties of covid-19 epidemic by elevating the role social clustering 9 of population. The model can be used to explain slower approaching 10 herd immunity in Sweden, than it was predicted by a variety of other 11 mathematical models; see graphs Fig. 2. The hierarchic structure 12 of social clusters is mathematically modeled with ultrametric spaces 13 having treelike geometry. To simplify mathematics, we consider ho- 14 mogeneous trees with p-branches leaving each vertex. Such trees are 15 endowed with algebraic structure, the p-adic number fields. We ap- 16 ply theory of the p-adic diffusion equation to describe coronavirus' 17 spread in hierarchically clustered population. This equation has ap- 18 plications to statistical physics and microbiology for modeling dynam- 19 ics on energy landscapes. To move from one social cluster (valley) to 20 another, the virus (its carrier) should cross a social barrier between 21 them. -
Or Natural) Density D(A)Forsetsa of Natural Numbers Is a Central Tool in Number Theory: |A ∩ [1,N]| D(A) = Lim (Provided the Limit Exists
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 8, August 2010, Pages 2657–2665 S 0002-9939(10)10351-7 Article electronically published on April 1, 2010 FINE ASYMPTOTIC DENSITIES FOR SETS OF NATURAL NUMBERS MAURO DI NASSO (Communicated by Julia Knight) Abstract. By allowing values in non-Archimedean extensions of the unit in- terval, we consider finitely additive measures that generalize the asymptotic density. The existence of a natural class of such “fine densities” is independent of ZFC. Introduction The asymptotic (or natural) density d(A)forsetsA of natural numbers is a central tool in number theory: |A ∩ [1,n]| d(A) = lim (provided the limit exists). n→∞ n In many applications, it is useful to consider suitable extensions of d that are defined for all subsets. Among the most relevant examples, there are the upper and lower density,theSchnirelmann density,andtheupper Banach density (see e.g. [9], [7], [13]). Several authors investigated the general problem of densities, i.e. the possibility of constructing finitely additive measures that extend asymptotic density to all subsets of the natural numbers and that satisfy some additional properties (see e.g. [2], [11], [12] and [1]). Recently, generalized probabilities have been introduced that take values into non-Archimedean rings (see e.g. [8] and [10]). In this paper we pursue the idea of refining the notion of density by allowing values into a non-Archimedean extension of the unit interval. To this aim, we introduce a notion of “fine density” as a suitable finitely additive function on P(N) that gives a non-zero (infinitesimal) measure even to singletons.