Arxiv:1902.08747V2 [Math.MG] 9 Jul 2019 O H E Falnneaiera Numbers
ON ULTRAMETRIC-PRESERVING FUNCTIONS OLEKSIY DOVGOSHEY Abstract. Characterizations of pseudoultrametric-preserving functions and semimetric- preserving functions are found. The structural properties of pseudoultrametrics which can be rep- resented as a composition of an ultrametric and ultrametric-pseudoultrametric-preserving func- tion are found. A dual form of Pongsriiam–Termwuttipong characterization of the ultrametric- preserving functions is described. We also introduce a concept of k-separating family of functions and use it to characterize the ultrametric spaces. 1. Introduction Recall some definitions from the theory of metric spaces. In what follows we write R+ := [0, ∞) for the set of all nonnegative real numbers. Definition 1.1. A metric on a set X is a function d: X × X → R+ such that for all x, y, z ∈ X: (i) (d(x, y)=0) ⇔ (x = y); (ii) d(x, y)= d(y, x); (iii) d(x, y) ≤ d(x, z)+ d(z,y). A metric d: X × X → R+ is an ultrametric on X if (iv) d(x, y) ≤ max{d(x, z), d(z,y)} holds for all x, y, z ∈ X. By analogy with triangle inequality (iii), inequality (iv) is often called the strong triangle inequality. The theory of ultrametric spaces is closely connected with various directions of investigations in mathematics, physics, linguistics, psychology and computer science. Different properties of ultrametric spaces have been studied in [3,9,18–20,22,30,31,39,43–49,54–56,61,62]. Note that the use of trees and tree-like structures gives a natural language for description of ultrametric spaces [2, 6, 10, 17, 23, 24, 26–28, 33, 36–38, 49–51].
[Show full text]