Topology Proceedings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constructive Closed Range and Open Mapping Theorems in This Paper
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Indag. Mathem., N.S., 11 (4), 509-516 December l&2000 Constructive Closed Range and Open Mapping Theorems by Douglas Bridges and Hajime lshihara Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: d. [email protected] School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-12, Japan email: [email protected] Communicated by Prof. AS. Troelstra at the meeting of November 27,200O ABSTRACT We prove a version of the closed range theorem within Bishop’s constructive mathematics. This is applied to show that ifan operator Ton a Hilbert space has an adjoint and a complete range, then both T and T’ are sequentially open. 1. INTRODUCTION In this paper we continue our constructive exploration of the theory of opera- tors, in particular operators on a Hilbert space ([5], [6], [7]). We work entirely within Bishop’s constructive mathematics, which we regard as mathematics with intuitionistic logic. For discussions of the merits of this approach to mathematics - in particular, the multiplicity of its models - see [3] and [ll]. The technical background needed in our paper is found in [I] and [IO]. Our main aim is to prove the following result, the constructive Closed Range Theorem for operators on a Hilbert space (cf. [18], pages 99-103): Theorem 1. Let H be a Hilbert space, and T a linear operator on H such that T* exists and ran(T) is closed. -
The Uniform Boundedness Theorem in Asymmetric Normed Spaces
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 809626, 8 pages doi:10.1155/2012/809626 Research Article The Uniform Boundedness Theorem in Asymmetric Normed Spaces C. Alegre,1 S. Romaguera,1 and P. Veeramani2 1 Instituto Universitario de Matematica´ Pura y Aplicada, Universitat Politecnica` de Valencia,` 46022 Valencia, Spain 2 Department of Mathematics, Indian Institute of Technology Madras, Chennai 6000 36, India Correspondence should be addressed to C. Alegre, [email protected] Received 5 July 2012; Accepted 27 August 2012 Academic Editor: Yong Zhou Copyright q 2012 C. Alegre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We obtain a uniform boundedness type theorem in the frame of asymmetric normed spaces. The classical result for normed spaces follows as a particular case. 1. Introduction Throughout this paper the letters R and R will denote the set of real numbers and the set of nonnegative real numbers, respectively. The book of Aliprantis and Border 1 provides a good basic reference for functional analysis in our context. Let X be a real vector space. A function p : X → R is said to be an asymmetric norm on X 2, 3 if for all x, y ∈ X,andr ∈ R , i pxp−x0 if and only if x 0; ii prxrpx; iii px y ≤ pxpy. The pair X, p is called an asymmetric normed space. Asymmetric norms are also called quasinorms in 4–6, and nonsymmetric norms in 7. -
On X-Normed Spaces and Operator Theory on C 0 Over a Field with A
ON X-NORMED SPACES AND OPERATOR THEORY ON c0 OVER A FIELD WITH A KRULL VALUATION OF ARBITRARY RANK by Angel Barría Comicheo A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Mathematics University of Manitoba Winnipeg Copyright c 2018 by Angel Barría Comicheo Abstract Between 2013 and 2015 Aguayo et al. developed an operator theory on the space c0 of null sequences in the complex Levi-Civita field C by defining an inner product on c0 that induces the supremum norm on c0 and then studying compact and self- adjoint operators on c0, thus presenting a striking analogy between c0 over C and the Hilbert space `2 over C. In this thesis, we try to obtain these results in the most general case possible by considering a base field with a Krull valuation taking values in an arbitrary commutative group. This leads to the concept of X-normed spaces, which are spaces with norms taking values in a totally ordered set X not necessarily embedded in R. Two goals are considered in the thesis: (1) to present and contribute to a theory of X-normed spaces, and (2) to develop an operator theory on c0 over a field with a Krull valuation of arbitrary rank. In order to meet the goal (1), a systematic study of valued fields, G-modules and X-normed spaces is conducted in order to satisfy the generality of the settings required. For the goal (2), we identify the major differences between normed spaces over fields of rank 1 and X-normed spaces over fields of higher rank; and we try to find the right conditions for which the techniques employed in the rank-1 case can be used in the higher rank case. -
Notes on Linear Functional Analysis by M.A Sofi
Linear Functional Analysis Prof. M. A. Sofi Department of Mathematics University of Kashmir Srinagar-190006 1 Bounded linear operators In this section, we shall characterize continuity of linear operators acting between normed spaces. It turns out that a linear operator is continuous on a normed linear space as soon as it is continuous at the origin or for that matter, at any point of the domain of its definition. Theorem 1.1. Given normed spaces X and Y and a linear map T : X ! Y; then T is continuous on X if and only if 9 c > 0 such that kT (x)k ≤ ckxk; 8 x 2 X: (1) Proof. Assume that T is continuous. In particular, T is continuous at the origin. By the definition of continuity, since T (0) = 0; there exits a neigh- bourhood U at the origin in X such that T (U) ⊆ B(Y ): But then 9r > 0 such that Sr(0) ⊂ U: This gives T (Sr(0)) ⊆ T (U) ⊆ B(Y ): (2) x Let x(6= 0) 2 X; for otherwise, (1) is trivially satisfied. Then kxk 2 Sr(0); so rx that by (2), T 2kxk 2 B(Y ): In other words, 2 kT (x)k ≤ ckxk where c = r which gives (1). Conversely, assume that (1) is true. To show that T is continuous on X; let 1 n n x 2 X and assume that xn −! x in X: Then xn − x −! 0 in X: Thus, 8 > 0; 9 N 3: 8 n > N; kT (xn) − T (x)k = kT (xn − x)k ≤ ckxn − xk ≤ , n which holds for all n > N: In other words, T (xn) −! T (x) in Y and therefore, T is continuous at x 2 X: Since x 2 X was arbitrarily chosen, it follows that T is continuous on X: Definition 1.2. -
Operator Algebras Generated by Left Invertibles Derek Desantis [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Papers Mathematics, Department of in Mathematics 3-2019 Operator algebras generated by left invertibles Derek DeSantis [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent Part of the Analysis Commons, Harmonic Analysis and Representation Commons, and the Other Mathematics Commons DeSantis, Derek, "Operator algebras generated by left invertibles" (2019). Dissertations, Theses, and Student Research Papers in Mathematics. 93. https://digitalcommons.unl.edu/mathstudent/93 This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, and Student Research Papers in Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. OPERATOR ALGEBRAS GENERATED BY LEFT INVERTIBLES by Derek DeSantis A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Doctor of Philosophy Major: Mathematics Under the Supervision of Professor David Pitts Lincoln, Nebraska March, 2019 OPERATOR ALGEBRAS GENERATED BY LEFT INVERTIBLES Derek DeSantis, Ph.D. University of Nebraska, 2019 Adviser: David Pitts Operator algebras generated by partial isometries and their adjoints form the basis for some of the most well studied classes of C*-algebras. Representations of such algebras encode the dynamics of orthonormal sets in a Hilbert space. We instigate a research program on concrete operator algebras that model the dynamics of Hilbert space frames. The primary object of this thesis is the norm-closed operator algebra generated by a left y invertible T together with its Moore-Penrose inverse T . -
Eberlein-Šmulian Theorem and Some of Its Applications
Eberlein-Šmulian theorem and some of its applications Kristina Qarri Supervisors Trond Abrahamsen Associate professor, PhD University of Agder Norway Olav Nygaard Professor, PhD University of Agder Norway This master’s thesis is carried out as a part of the education at the University of Agder and is therefore approved as a part of this education. However, this does not imply that the University answers for the methods that are used or the conclusions that are drawn. University of Agder, 2014 Faculty of Engineering and Science Department of Mathematics Contents Abstract 1 1 Introduction 2 1.1 Notation and terminology . 4 1.2 Cornerstones in Functional Analysis . 4 2 Basics of weak and weak* topologies 6 2.1 The weak topology . 7 2.2 Weak* topology . 16 3 Schauder Basis Theory 21 3.1 First Properties . 21 3.2 Constructing basic sequences . 37 4 Proof of the Eberlein Šmulian theorem due to Whitley 50 5 The weak topology and the topology of pointwise convergence on C(K) 58 6 A generalization of the Ebrlein-Šmulian theorem 64 7 Some applications to Tauberian operator theory 69 Summary 73 i Abstract The thesis is about Eberlein-Šmulian and some its applications. The goal is to investigate and explain different proofs of the Eberlein-Šmulian theorem. First we introduce the general theory of weak and weak* topology defined on a normed space X. Next we present the definition of a basis and a Schauder basis of a given Banach space. We give some examples and prove the main theorems which are needed to enjoy the proof of the Eberlein-Šmulian theorem given by Pelchynski in 1964. -
On Sandwich Theorem for Delta-Subadditive and Delta-Superadditive Mappings
Results Math 72 (2017), 385–399 c 2016 The Author(s). This article is published with open access at Springerlink.com 1422-6383/17/010385-15 published online December 5, 2016 Results in Mathematics DOI 10.1007/s00025-016-0627-7 On Sandwich Theorem for Delta-Subadditive and Delta-Superadditive Mappings Andrzej Olbry´s Abstract. In the present paper, inspired by methods contained in Gajda and Kominek (Stud Math 100:25–38, 1991) we generalize the well known sandwich theorem for subadditive and superadditive functionals to the case of delta-subadditive and delta-superadditive mappings. As a conse- quence we obtain the classical Hyers–Ulam stability result for the Cauchy functional equation. We also consider the problem of supporting delta- subadditive maps by additive ones. Mathematics Subject Classification. 39B62, 39B72. Keywords. Functional inequality, additive mapping, delta-subadditive mapping, delta-superadditive mapping. 1. Introduction We denote by R, N the sets of all reals and positive integers, respectively, moreover, unless explicitly stated otherwise, (Y,·) denotes a real normed space and (S, ·) stands for not necessary commutative semigroup. We recall that a functional f : S → R is said to be subadditive if f(x · y) ≤ f(x)+f(y),x,y∈ S. A functional g : S → R is called superadditive if f := −g is subadditive or, equivalently, if g satisfies g(x)+g(y) ≤ g(x · y),x,y∈ S. If a : S → R is at the same time subadditive and superadditive then we say that it is additive, in this case a satisfies the Cauchy functional equation a(x · y)=a(x)+a(y),x,y∈ S. -
Norm Attaining Functionals on C(T)
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 1, January 1998, Pages 153{157 S 0002-9939(98)04008-8 NORM ATTAINING FUNCTIONALS ON C(T ) P. S. KENDEROV, W. B. MOORS, AND SCOTT SCIFFER (Communicated by Dale Alspach) Abstract. It is shown that for any infinite compact Hausdorff space T ,the Bishop-Phelps set in C(T )∗ is of the first Baire category when C(T )hasthe supremum norm. For a Banach space X with closed unit ball B(X), the Bishop-Phelps set is the set of all functionals in the dual X∗ which attain their supremum on B(X); that is, the set µ X∗:thereexistsx B(X) with µ(x)= µ .Itiswellknownthat { ∈ ∈ k k} the Bishop-Phelps set is always dense in the dual X∗. It is more difficult, however, to decide whether the Bishop-Phelps set is residual as this would require a concrete characterisation of those linear functionals in X∗ which attain their supremum on B(X). In general it is difficult to characterise such functionals, however it is possible when X = C(T ), for some compact T , with the supremum norm. The aim of this note is to show that in this case the Bishop-Phelps set is a first Baire category subset of C(T )∗. A problem of considerable interest in differentiability theory is the following. If the Bishop-Phelps set is a residual subset of the dual X ∗, is the dual norm necessarily densely Fr´echet differentiable? It is known, for example, that this is the case if the dual X∗ is weak Asplund, [1, Corollary 1.6(i)], or if X has an equivalent weakly mid-point locally uniformly rotund norm and the weak topology on X is σ-fragmented by the norm, [2, Theo- rems 3.3 and 4.4]. -
Amplicon Analysis I
Amplicon Analysis I Eduardo Pareja-Tobes, Raquel Tobes Oh no sequences! research group, Era7 Bioinformatics Plaza de Campo Verde, 3, 18001 Granada, Spain September 16, 2019 Abstract Here we present 1. a model for amplicon sequencing 2. a definition of the best assignment of a read to a set of reference sequences 3. strategies and structures for indexing reference sequences and computing the best assign- ments of a set of reads efficiently, based on (ultra)metric spaces and their geometry The models, techniques, and ideas are particularly relevant to scenarios akin to 16S taxonomic profiling, where both the number of reference sequences and the read diversity is considerable. Keywords bioinformatics, NGS, DNA sequencing, DNA sequence analysis, amplicons, ultrametric spaces, in- dexing. Corresponding author Eduardo Pareja-Tobes [email protected] 1 1 Reads, Amplicons, References, Assignments In this section we will define what we understand as reads, amplicons, references, and the best as- signment of a read with respect to a set of references. In our model the reads are a product of the probability distribution for the 4 bases (A, C, G and T) in each position of the sequence. 푛−1 Definition 1.0.1 Read. A read 푅 of length 푛 is a product ∏푖=0 푅푖 of 푛 probability distributions on Σ = {퐴, 푇 , 퐶, 퐺}. We will denote the length of a read as |푅|. The corresponding probability mass function is thus defined on the space Σ푛 of sequences in Σ of 푛−1 푛 length 푛, the domain of 푅. The probability that 푅 assigns to a sequence 푥 = (푥푖)푖=0 ∶ Σ is 푛−1 푅(푥) = ∏ 푅푖(푥푖) 푖=0 Remark 1.0.2. -
An Introduction to Basic Functional Analysis
AN INTRODUCTION TO BASIC FUNCTIONAL ANALYSIS T. S. S. R. K. RAO . 1. Introduction This is a write-up of the lectures given at the Advanced Instructional School (AIS) on ` Functional Analysis and Harmonic Analysis ' during the ¯rst week of July 2006. All of the material is standard and can be found in many basic text books on Functional Analysis. As the prerequisites, I take the liberty of assuming 1) Basic Metric space theory, including completeness and the Baire category theorem. 2) Basic Lebesgue measure theory and some abstract (σ-¯nite) measure theory in- cluding the Radon-Nikodym theorem and the completeness of Lp-spaces. I thank Professor A. Mangasuli for carefully proof reading these notes. 2. Banach spaces and Examples. Let X be a vector space over the real or complex scalar ¯eld. Let k:k : X ! R+ be a function such that (1) kxk = 0 , x = 0 (2) k®xk = j®jkxk (3) kx + yk · kxk + kyk for all x; y 2 X and scalars ®. Such a function is called a norm on X and (X; k:k) is called a normed linear space. Most often we will be working with only one speci¯c k:k on any given vector space X thus we omit writing k:k and simply say that X is a normed linear space. It is an easy exercise to show that d(x; y) = kx ¡ yk de¯nes a metric on X and thus there is an associated notion of topology and convergence. If X is a normed linear space and Y ½ X is a subspace then by restricting the norm to Y , we can consider Y as a normed linear space. -
Arxiv:1810.03128V2 [Math.MG]
FINITE ULTRAMETRIC BALLS O. DOVGOSHEY Abstract. The necessary and sufficient conditions under which a given family F of subsets of finite set X coincides with the family BX of all balls generated by some ultrametric d on X are found. It is shown that the representing tree of the ultrametric space (BX , dH ) with the Hausdorff distance dH can be obtained from the representing tree TX of ultrametric space (X, d) by adding a leaf to every internal vertex of TX . 1. Introduction. Balls in ultrametric space The main object of research in this paper is the set of all balls in a given finite ultrametric space. The theory of ultrametric spaces is closely connected with various directions of studies in mathematics, physics, linguistics, psychology and computer science. Different prop- erties of ultrametric spaces are described at [3, 7, 11–14, 20,21,28,31– 38,42–46]. The use of trees and tree-like structures gives a natural lan- guage for description of ultrametric spaces. For the relationships between these spaces and the leaves or the ends of certain trees see [1,2,5,8,19,22,23,25–27,38]. In particular, a convenient representa- tion of finite ultrametric spaces (X,d) by monotone canonical trees was found by V. Gurvich and M. Vyalyi [22]. A simple algorithm having a clear geometric interpretation was proposed in [40] for constructing monotone canonical trees. Following [40] we will say that these trees arXiv:1810.03128v2 [math.MG] 23 Mar 2019 are representing trees of spaces (X,d). The present paper can be con- sidered as a development of studies initiated at [22] and continued at [10,16,18,39–41]. -
Notes on Elementary Linear Algebra
Notes on Elementary Linear Algebra Adam Coffman Contents 1 Real vector spaces 2 2 Subspaces 6 3 Additive Functions and Linear Functions 8 4 Distance functions 10 5 Bilinear forms and sesquilinear forms 12 6 Inner Products 18 7 Orthogonal and unitary transformations for non-degenerate inner products 25 8 Orthogonal and unitary transformations for positive definite inner products 29 These Notes are compiled from classroom handouts for Math 351, Math 511, and Math 554 at IPFW. They are not self-contained, but supplement the required texts, [A], [FIS], and [HK]. 1 1 Real vector spaces Definition 1.1. Given a set V , and two operations + (addition) and · (scalar multiplication), V is a “real vector space” means that the operations have all of the following properties: 1. Closure under Addition: For any u ∈ V and v ∈ V , u + v ∈ V . 2. Associative Law for Addition: For any u ∈ V and v ∈ V and w ∈ V ,(u + v)+w = u +(v + w). 3. Existence of a Zero Element: There exists an element 0 ∈ V such that for any v ∈ V , v + 0 = v. 4. Existence of an Opposite: For each v ∈ V , there exists an element of V , called −v ∈ V , such that v +(−v)=0. 5. Closure under Scalar Multiplication: For any r ∈ R and v ∈ V , r · v ∈ V . 6. Associative Law for Scalar Multiplication: For any r, s ∈ R and v ∈ V ,(rs) · v = r · (s · v). 7. Scalar Multiplication Identity: For any v ∈ V ,1· v = v. 8. Distributive Law: For all r, s ∈ R and v ∈ V ,(r + s) · v =(r · v)+(s · v).