Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail:
[email protected] ISSN: 0146-4124 COPYRIGHT °c by Topology Proceedings. All rights reserved. Topology Proceedings Volume 24, Summer 1999, 547–581 BANACH SPACES OVER NONARCHIMEDEAN VALUED FIELDS Wim H. Schikhof Abstract In this survey note we present the state of the art on the theory of Banach and Hilbert spaces over complete valued scalar fields that are not isomor- phic to R or C. For convenience we treat ‘classical’ theorems (such as Hahn-Banach Theorem, Closed Range Theorem, Riesz Representation Theorem, Eberlein-Smulian’s˘ Theorem, Krein-Milman The- orem) and discuss whether or not they remain valid in this new context, thereby stating some- times strong negations or strong improvements. Meanwhile several concepts are being introduced (such as norm orthogonality, spherical complete- ness, compactoidity, modules over valuation rings) leading to results that do not have -or at least have less important- counterparts in the classical theory. 1. The Scalar Field K 1.1. Non-archimedean Valued Fields and Their Topologies In many branches of mathematics and its applications the valued fields of the real numbers R and the complex numbers C play a Mathematics Subject Classification: 46S10, 47S10, 46A19, 46Bxx Key words: non-archimedean, Banach space, Hilbert space 548 Wim H. Schikhof fundamental role. For quite some time one has been discussing the consequences of replacing in those theories R or C -at first- by the more general object of a valued field (K, ||) i.e. a com- mutative field K, together with a valuation ||: K → [0, ∞) satisfying |λ| =0iffλ =0,|λ+µ|≤|λ|+|µ|, |λµ| = |λ||µ| for all λ, µ ∈ K.