MATH 518—Functional Analysis (Winter 2021)

Total Page:16

File Type:pdf, Size:1020Kb

MATH 518—Functional Analysis (Winter 2021) MATH 518|Functional Analysis (Winter 2021) Volker Runde April 15, 2021 Contents 1 Topological Vector Spaces 2 1.1 A Vector Space That Cannot Be Turned into a Banach Space . 2 1.2 Locally Convex Spaces . 4 1.3 Geometric Consequences of the Hahn{Banach Theorem . 15 1.4 The Krein{Milman Theorem . 25 2 Weak and Weak∗ Topologies 31 2.1 The Weak∗ Topology on the Dual of a Normed Space . 31 2.2 Weak Compactness in Banach Spaces . 37 2.3 Weakly Compact Operators . 40 3 Bases in Banach Spaces 46 3.1 Schauder Bases . 46 3.2 Bases in Classical Banach Spaces . 56 3.3 Unconditional Bases . 66 4 Local Structure and Geometry of Banach Spaces 73 4.1 Finite-dimensional Structure . 73 4.2 Ultraproducts . 78 4.3 Uniform Convexity . 88 4.4 Differentiability of Norms . 94 5 Tensor Products of Banach spaces 101 5.1 The Algebraic Tensor Product . 101 5.2 The Injective Tensor Product . 104 5.3 The Projective Tensor Product . 108 5.4 The Hilbert Space Tensor Product . 111 1 Chapter 1 Topological Vector Spaces 1.1 A Vector Space That Cannot Be Turned into a Banach Space Throughout these notes, we use F to denote a field that can either be the real numbers R or the complex numbers C. Recall that a Banach space is a vector space E over F equipped with a norm k · k, i.e., a normed space, such that every Cauchy sequence in (E; k · k) converges. Examples. 1. Consider the vector space C([0; 1]) := ff : [0; 1] ! F : f is continuousg: The supremum norm on C([0; 1]) is defined to be kfk1 := sup jf(t)j (f 2 C([0; 1])): t2[0;1] It is well known that (C([0; 1]); k · k1) is a Banach space. 2. For n 2 N, consider the vector space n C ([0; 1]) := ff : [0; 1] ! F : f is n-times continuously differentiableg: The Weierstraß Approximation Theorem, states that the polynomials are dense in n (C([0; 1]); k · k1). Therefore (C ([0; 1]); k · k1) cannot be a Banach space. However, if we define n X (j) n kfkCn := f (f 2 C ([0; 1])); 1 j=0 n then (C ([0; 1]); k · kCn ) is a Banach space. 2 3. Consider the vector space 1 \ C1([0; 1]) := Cn([0; 1]): n=1 1 Again, the Weierstraß Approximation Theorem yields that (C ([0; 1]); k · k1) is not 1 a Banach space. With a little more work one can see that (C ([0; 1]); k · kCn ) is not a Banach space either for all n 2 N. We claim that more is true: Claim 1 There is no norm k · k on C1([0; 1]) such that: (a) (C1([0; 1]); k · k) is a Banach space; (b) for each t 2 [0; 1], the linear functional 1 C ([0; 1]) ! F; f 7! f(t) is continuous with respect to k · k. In what follows, we will suppress the symbol k · k in (C1([0; 1]); k · k) and simply write C1([0; 1]). We will prove Claim 1 by contradiction. Assume that there is a norm k · k on C1([0; 1]) such that (a) and (b) hold. We prove two auxiliary claims that will lead us towards a contradiction. Claim 2 For each t 2 [0; 1], the linear functional 1 0 C ([0; 1]) ! F; f 7! f (t) (1.1) is continuous with respect to k · k. 1 Proof. Fix t 2 [0; 1], and let the functional (1.1) be denoted by φ. Let (hn)n=1 be a sequence of non-zero reals such that t + hn 2 [0; 1] for all n 2 N and hn ! 0. For n 2 N, set 1 f(t + hn) − f(t) φn : C ([0; 1]) ! F; f 7! : hn By (b), each φn is a linear combination of continuous, linear functionals and therefore 1 itself continuous. As hf; φi = limn!1hf; φni for all f 2 C ([0; 1]) by the very definition of the first derivative (a well known corollary of) the Uniform Boundedness Theorem yields the continuity of φ. Claim 3 The linear operator d : C1([0; 1]) !C1([0; 1]); f 7! f 0 dx is continuous. 3 1 Proof. We will apply the Closed Graph Theorem. Let (fn)n=1 be a sequence in C1([0; 1]), and let g 2 C1([0; 1]) be such that 0 fn ! 0 and fn ! g: We need to show that g ≡ 0. To see this, let t 2 [0; 1]. By Claim 2, we have 0 0 fn(t) ! 0 whereas (b) yields fn(t) ! g(t), so that g(t) = 0. As t 2 [0; 1] is arbitrary, this means g ≡ 0. d d To complete the proof of Claim 2, choose C > dx where dx is the operator d 1 norm of dx on the Banach space C ([0; 1]). Define Ct f : [0; 1] ! R; t 7! e ; so that f 2 C1([0; 1]) and f 0(t) = C eCt = C f(t)(t 2 [0; 1]): This yields 0 d Ckfk = kC fk = kf k ≤ kfk dx and, consequently, d C ≤ ; dx which contradicts the choice of C. The last example strongly suggests that we may have to look beyond the realm of normed and Banach spaces if we want to investigate certain natural examples of function spaces with functional analytic methods. 1.2 Locally Convex Spaces Unless specified otherwise, all vector spaces will from now on be over F, i.e., over R or over C Definition 1.2.1. A topological vector space|short: TVS|is a vector space E over F equipped with a Hausdorff topology T such that the maps E × E ! E; (x; y) 7! x + y and F × E ! E; (λ, x) 7! λx are continuous, where E×E and F×E are equipped with the respective product topologies. 4 We refer to a topological vector space E with its given topology T by the symbol (E; T ) or simply by E if no confusion can occur about T . Of course, every normed space is a topological vector space with T being the topology induced by the norm. Definition 1.2.2. Let E be a vector space. Then a map p : E ! [0; 1) is called a seminorm if p(x + y) ≤ p(x) + p(y)(x; y 2 E) and p(λx) = jλjp(x)(λ 2 F; x 2 E): Remarks. 1. If p(x) = 0 implies that x = 0 for all x 2 E, then p is, in fact, a norm. 2. We have jp(x) − p(y)j ≤ p(x − y)(x; y 2 E): (1.2) This is proved exactly like the corresponding statement for norms. Proposition 1.2.3. Let E be a topological vector space, and let p be a seminorm on E. Then the following are equivalent: (i) p is continuous; (ii) fx 2 E : p(x) < 1g is open; (iii) 0 2 intfx 2 E : p(x) < 1g; (iv) 0 2 intfx 2 E : p(x) ≤ 1g; (v) p is continuous at 0; (vi) there is a continuous seminorm q on E such that p ≤ q. Proof. (i) =) (ii) =) (iii) =) (iv) are straightforward. −1 (iv) =) (v): Let U be a neighborhood of 0 in F. We need to show that p (U) is a neighborhood of 0 in E. Choose > 0 such that (−, ) ⊂ U. It follows that h i p−1((−, )) ⊃ p−1 − ; = p−1([−1; 1]) = fx 2 E : p(x) ≤ 1g: 2 2 2 2 By (iv), 0 2 E is an interior point of fx 2 E : p(x) ≤ 1g and therefore of p−1((−, )). This means that p−1((−, )) is a neighborhood of 0 as is, consequently, p−1(U). (v) =) (i): Let x 2 E and let (xα)α be a net in E such that xα ! x. It follows that xα − x ! 0, so that|by (1.2)| jp(xα) − p(x)j ≤ p(xα − x) ! 0: 5 This proves the continuity of p at x. (i) =) (vi) is obvious (vi) =) (v): Let (xα)α be a net in E such that xα ! 0. It follows that p(xα) ≤ q(xα) ! 0; so that p is continuous at 0. Remarks. 1. If p1; : : : ; pn are continuous seminorms on E, then so are p1 + ··· + pn and maxj=1;:::;n pj. 2. If P is a family of seminorms on E such that there is a continuous seminorm q with p ≤ q for all p 2 P, then E ! [0; 1); x 7! sup p(x) p2P is a continuous seminorm. Definition 1.2.4. A vector space E equipped with a family P of seminorms such that Tfp−1(f0g): p 2 Pg = f0g is a called a locally convex (vector) space|in short: LCS. We will write (E; P) for a locally convex space with its given family of seminorms and often suppress the symbol P if no confusion can arise. Note that we do not a priori require that a locally convex space be a topological vector space. Next, we will see that a locally convex space (E; P) is equipped with a canonical topology induced by P. Theorem 1.2.5. Let (E; P) be a locally convex space, and consider the collection of all subsets U of E such that, for each x 2 U, there are p1; : : : ; pn 2 P and 1; : : : ; n > 0 such that fy 2 E : pj(x − y) < j for j = 1; : : : ; ng ⊂ U: Then these subsets of E form Hausdorff topology T over E turning E into a topological vector space.
Recommended publications
  • Projective Tensor Products, Injective Tensor Products, and Dual Relations on Operator Spaces
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-2006 Projective tensor products, injective tensor products, and dual relations on operator spaces. Fuhua Chen University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Chen, Fuhua, "Projective tensor products, injective tensor products, and dual relations on operator spaces." (2006). Electronic Theses and Dissertations. 7096. https://scholar.uwindsor.ca/etd/7096 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. P r o je c t iv e T e n so r P r o d u c t s , In je c t iv e T e n so r P r o d u c t s , a n d D ual R elatio ns on O p e r a t o r S paces by Fuhua Chen A Thesis Submitted to the Faculty of Graduate Studies and Research through Mathematics and Statistics in Partial Fulfillment of the Requirements of the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2006 © 2006 Fuhua Chen Reproduced with permission of the copyright owner.
    [Show full text]
  • Grothendieck's Tensor Norms
    Grothendieck's tensor norms Vandana Shivaji College, University of Delhi, India April, 2015 Vandana Grothendieck's tensor norms Overview Grothendieck's tensor norms Operator spaces Tensor products of Operator spaces Schur tensor product Vandana Grothendieck's tensor norms Grothendieck's tensor norms A Banach space is a complete normed space. For Banach spaces X and Y , X ⊗ Y = spanfx ⊗ y : x 2 X; y 2 Y g, where x ⊗ y is the functional on B(X∗ × Y ∗; C) given by x ⊗ y(f; g) = f(x)g(y) for f 2 X∗ and g 2 Y ∗. For a pair of arbitrary Banach spaces X and Y , the norm on X ⊗ Y induced by the embedding X ⊗ Y ! B(X∗ × Y ∗; C) is known as Banach space injective tensor norm. That is , for u 2 X ⊗ Y , the Banach space injective tensor norm is defined to be n n o X ∗ ∗ kukλ = sup f(xi)g(yi) : f 2 X1 ; g 2 Y1 : i=1 Vandana Grothendieck's tensor norms Grothendieck's tensor norms Question is How can we norm on X ⊗ Y ? n X kx ⊗ ykα ≤ kxkkyk, then, for u = xi ⊗ yi, by triangle's i=1 n X inequality it follows that kukα ≤ kxikkyik. Since this holds for i=1 n X every representation of u, so we have kukα ≤ inff kxikkyikg. i=1 For a pair of arbitrary Banach spaces X and Y and u an element in the algebraic tensor product X ⊗ Y , the Banach space projective tensor norm is defined to be n n X X kukγ = inff kxikkyik : u = xi ⊗ yi; n 2 Ng: i=1 i=1 X ⊗γ Y will denote the completion of X ⊗ Y with respect to this norm.
    [Show full text]
  • The Uniform Boundedness Theorem in Asymmetric Normed Spaces
    Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 809626, 8 pages doi:10.1155/2012/809626 Research Article The Uniform Boundedness Theorem in Asymmetric Normed Spaces C. Alegre,1 S. Romaguera,1 and P. Veeramani2 1 Instituto Universitario de Matematica´ Pura y Aplicada, Universitat Politecnica` de Valencia,` 46022 Valencia, Spain 2 Department of Mathematics, Indian Institute of Technology Madras, Chennai 6000 36, India Correspondence should be addressed to C. Alegre, [email protected] Received 5 July 2012; Accepted 27 August 2012 Academic Editor: Yong Zhou Copyright q 2012 C. Alegre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We obtain a uniform boundedness type theorem in the frame of asymmetric normed spaces. The classical result for normed spaces follows as a particular case. 1. Introduction Throughout this paper the letters R and R will denote the set of real numbers and the set of nonnegative real numbers, respectively. The book of Aliprantis and Border 1 provides a good basic reference for functional analysis in our context. Let X be a real vector space. A function p : X → R is said to be an asymmetric norm on X 2, 3 if for all x, y ∈ X,andr ∈ R , i pxp−x0 if and only if x 0; ii prxrpx; iii px y ≤ pxpy. The pair X, p is called an asymmetric normed space. Asymmetric norms are also called quasinorms in 4–6, and nonsymmetric norms in 7.
    [Show full text]
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • On the Geometry of Projective Tensor Products
    ON THE GEOMETRY OF PROJECTIVE TENSOR PRODUCTS OHAD GILADI, JOSCHA PROCHNO, CARSTEN SCHUTT,¨ NICOLE TOMCZAK-JAEGERMANN, AND ELISABETH WERNER n Abstract. In this work, we study the volume ratio of the projective tensor products `p ⊗π n n `q ⊗π `r with 1 ≤ p ≤ q ≤ r ≤ 1. We obtain asymptotic formulas that are sharp in almost all cases. As a consequence of our estimates, these spaces allow for a nearly Euclidean decomposition of Kaˇsintype whenever 1 ≤ p ≤ q ≤ r ≤ 2 or 1 ≤ p ≤ 2 ≤ r ≤ 1 and q = 2. Also, from the Bourgain-Milman bound on the volume ratio of Banach spaces in terms of their cotype 2 constant, we obtain information on the cotype of these 3-fold projective tensor products. Our results naturally generalize to k-fold products `n ⊗ · · · ⊗ `n with k 2 p1 π π pk N and 1 ≤ p1 ≤ · · · ≤ pk ≤ 1. 1. Introduction In the geometry of Banach spaces the volume ratio vr(X) of an n-dimensional normed space X is defined as the n-th root of the volume of the unit ball in X divided by the volume of its John ellipsoid. This notion plays an important role in the local theory of Banach spaces and has significant applications in approximation theory. It formally originates in the works [Sza78] and [STJ80], which were influenced by the famous paper of B. Kaˇsin[Kaˇs77] on nearly Euclidean orthogonal decompositions. Kaˇsindiscovered that for arbitrary n 2 N, 2n the space `1 contains two orthogonal subspaces which are nearly Euclidean, meaning that n their Banach-Mazur distance to `2 is bounded by an absolute constant.
    [Show full text]
  • Notes on Linear Functional Analysis by M.A Sofi
    Linear Functional Analysis Prof. M. A. Sofi Department of Mathematics University of Kashmir Srinagar-190006 1 Bounded linear operators In this section, we shall characterize continuity of linear operators acting between normed spaces. It turns out that a linear operator is continuous on a normed linear space as soon as it is continuous at the origin or for that matter, at any point of the domain of its definition. Theorem 1.1. Given normed spaces X and Y and a linear map T : X ! Y; then T is continuous on X if and only if 9 c > 0 such that kT (x)k ≤ ckxk; 8 x 2 X: (1) Proof. Assume that T is continuous. In particular, T is continuous at the origin. By the definition of continuity, since T (0) = 0; there exits a neigh- bourhood U at the origin in X such that T (U) ⊆ B(Y ): But then 9r > 0 such that Sr(0) ⊂ U: This gives T (Sr(0)) ⊆ T (U) ⊆ B(Y ): (2) x Let x(6= 0) 2 X; for otherwise, (1) is trivially satisfied. Then kxk 2 Sr(0); so rx that by (2), T 2kxk 2 B(Y ): In other words, 2 kT (x)k ≤ ckxk where c = r which gives (1). Conversely, assume that (1) is true. To show that T is continuous on X; let 1 n n x 2 X and assume that xn −! x in X: Then xn − x −! 0 in X: Thus, 8 > 0; 9 N 3: 8 n > N; kT (xn) − T (x)k = kT (xn − x)k ≤ ckxn − xk ≤ , n which holds for all n > N: In other words, T (xn) −! T (x) in Y and therefore, T is continuous at x 2 X: Since x 2 X was arbitrarily chosen, it follows that T is continuous on X: Definition 1.2.
    [Show full text]
  • Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity
    Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity Josse van Dobben de Bruyn 24 September 2020 Abstract The tensor product of two ordered vector spaces can be ordered in more than one way, just as the tensor product of normed spaces can be normed in multiple ways. Two natural orderings have received considerable attention in the past, namely the ones given by the projective and injective (or biprojective) cones. This paper aims to show that these two cones behave similarly to their normed counterparts, and furthermore extends the study of these two cones from the algebraic tensor product to completed locally convex tensor products. The main results in this paper are the following: (i) drawing parallels with the normed theory, we show that the projective/injective cone has mapping properties analogous to those of the projective/injective norm; (ii) we establish direct formulas for the lineality space of the projective/injective cone, in particular providing necessary and sufficient conditions for the cone to be proper; (iii) we show how to construct faces of the projective/injective cone from faces of the base cones, in particular providing a complete characterization of the extremal rays of the projective cone; (iv) we prove that the projective/injective tensor product of two closed proper cones is contained in a closed proper cone (at least in the algebraic tensor product). 1 Introduction 1.1 Outline Tensor products of ordered (topological) vector spaces have been receiving attention for more than 50 years ([Mer64], [HF68], [Pop68], [PS69], [Pop69], [DS70], [vGK10], [Wor19]), but the focus has mostly been on Riesz spaces ([Sch72], [Fre72], [Fre74], [Wit74], [Sch74, §IV.7], [Bir76], [FT79], [Nie82], [GL88], [Nie88], [Bla16]) or on finite-dimensional spaces ([BL75], [Bar76], [Bar78a], [Bar78b], [Bar81], [BLP87], [ST90], [Tam92], [Mul97], [Hil08], [HN18], [ALPP19]).
    [Show full text]
  • Eberlein-Šmulian Theorem and Some of Its Applications
    Eberlein-Šmulian theorem and some of its applications Kristina Qarri Supervisors Trond Abrahamsen Associate professor, PhD University of Agder Norway Olav Nygaard Professor, PhD University of Agder Norway This master’s thesis is carried out as a part of the education at the University of Agder and is therefore approved as a part of this education. However, this does not imply that the University answers for the methods that are used or the conclusions that are drawn. University of Agder, 2014 Faculty of Engineering and Science Department of Mathematics Contents Abstract 1 1 Introduction 2 1.1 Notation and terminology . 4 1.2 Cornerstones in Functional Analysis . 4 2 Basics of weak and weak* topologies 6 2.1 The weak topology . 7 2.2 Weak* topology . 16 3 Schauder Basis Theory 21 3.1 First Properties . 21 3.2 Constructing basic sequences . 37 4 Proof of the Eberlein Šmulian theorem due to Whitley 50 5 The weak topology and the topology of pointwise convergence on C(K) 58 6 A generalization of the Ebrlein-Šmulian theorem 64 7 Some applications to Tauberian operator theory 69 Summary 73 i Abstract The thesis is about Eberlein-Šmulian and some its applications. The goal is to investigate and explain different proofs of the Eberlein-Šmulian theorem. First we introduce the general theory of weak and weak* topology defined on a normed space X. Next we present the definition of a basis and a Schauder basis of a given Banach space. We give some examples and prove the main theorems which are needed to enjoy the proof of the Eberlein-Šmulian theorem given by Pelchynski in 1964.
    [Show full text]
  • Norm Attaining Functionals on C(T)
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 1, January 1998, Pages 153{157 S 0002-9939(98)04008-8 NORM ATTAINING FUNCTIONALS ON C(T ) P. S. KENDEROV, W. B. MOORS, AND SCOTT SCIFFER (Communicated by Dale Alspach) Abstract. It is shown that for any infinite compact Hausdorff space T ,the Bishop-Phelps set in C(T )∗ is of the first Baire category when C(T )hasthe supremum norm. For a Banach space X with closed unit ball B(X), the Bishop-Phelps set is the set of all functionals in the dual X∗ which attain their supremum on B(X); that is, the set µ X∗:thereexistsx B(X) with µ(x)= µ .Itiswellknownthat { ∈ ∈ k k} the Bishop-Phelps set is always dense in the dual X∗. It is more difficult, however, to decide whether the Bishop-Phelps set is residual as this would require a concrete characterisation of those linear functionals in X∗ which attain their supremum on B(X). In general it is difficult to characterise such functionals, however it is possible when X = C(T ), for some compact T , with the supremum norm. The aim of this note is to show that in this case the Bishop-Phelps set is a first Baire category subset of C(T )∗. A problem of considerable interest in differentiability theory is the following. If the Bishop-Phelps set is a residual subset of the dual X ∗, is the dual norm necessarily densely Fr´echet differentiable? It is known, for example, that this is the case if the dual X∗ is weak Asplund, [1, Corollary 1.6(i)], or if X has an equivalent weakly mid-point locally uniformly rotund norm and the weak topology on X is σ-fragmented by the norm, [2, Theo- rems 3.3 and 4.4].
    [Show full text]
  • Geometry in Tensor Products
    Universita` degli Studi di Napoli \Federico II" Facolt`adi Scienze Matematiche Fisiche e Naturali Dipartimento di Matematica e Applicazioni \R.Caccioppoli" Dottorato di Ricerca in Scienze Matematiche Daniele Puglisi Geometry in tensor products TESI DI DOTTORATO XIX CICLO 2003-2007 Tutors: Prof. Paolo De Lucia Coordinatore: Prof. Salvatore Rionero Prof. Joseph Diestel ii Acknowledgements First of all I would like to thank Prof. Joseph Diestel, from Kent State Uni- versity, for his precious suggestions and many many helps. To sit near Joe when he is talking about math in his office, in some bar or also inside some airport, is an experience every young mathematicians should have. I really want to thank him to invited me and for giving me a comfortable permanence in Kent (I have no words to thank you!). Then I thank my advisor Prof. Paolo De Lucia for accepting me as his stu- dent and for giving me the opportunity to visit the Kent State University. Thanks to Prof. Richard Aron for his excellent mathematical support, for helping me in many situation, and for any time that he took me to hear the Cleveland Orchestra. I also want to dedicate part of my dissertation to Roberto Lo Re, Giovanni Cutolo, and Chansung Choi, they influenced strongly my life. Thanks to Prof. Artem Zvavitch for his support, and thanks to Giuseppe Saluzzo, Assunta Tataranni for the many helps. I want to give thanks the secretary support to the Department of Mathemat- ical Sciences at at Kent State University and at Napoli. Specially, I wish to thank Virginia Wright, Misty Tackett, Luciana Colmayer and Luisa Falanga.
    [Show full text]
  • Algebras of Operators on Banach Spaces, and Homomorphisms Thereof
    Algebras of operators on Banach spaces, and homomorphisms thereof Bence Horváth Department of Mathematics and Statistics Lancaster University This dissertation is submitted for the degree of Doctor of Philosophy May 2019 „S en-sorsom legsötétebb, mert színe s alja poltron, Élet s mű között bolyong, mint aggály-aszú lélek: Életben mű riongat, a műben lét a sorsom — S a sír-írásom ez: se égimű, se földi élet.” — Szentkuthy Miklós Declaration The research presented in this thesis has not been submitted for a higher degree elsewhere and is, to the best of my knowledge and belief, original and my own work, except as acknowledged herein. • Chapter 2 contains joint work with Y. Choi and N. J. Laustsen [12]. • Chapter 3 contains work submitted for publication [34]. • Chapter 4 contains work accepted for publication [33]. Bence Horváth May 2019 Acknowledgements First and foremost I would like to thank my brilliant supervisors, Dr Yemon Choi and Dr Niels Jakob Laustsen for all their support throughout these three and a half years. Not only did they share their incredible knowledge and mathematical insight with me, but their continued encouragement, patience, and generosity with their time helped me to get much further in my mathematical career than I ever expected. Niels and Yemon; thank you for making my PhD studies such an amazing part of my life! I would like to thank Professor Gábor Elek for the many fun conversations (math- ematical or otherwise) and for his (futile) efforts to talk some sense into me about picking up an interest in more fashionable areas of mathematics.
    [Show full text]
  • A Dual Differentiation Space Without an Equivalent Locally Uniformly Rotund Norm
    J. Aust. Math. Soc. 77 (2004), 357-364 A DUAL DIFFERENTIATION SPACE WITHOUT AN EQUIVALENT LOCALLY UNIFORMLY ROTUND NORM PETAR S. KENDEROV and WARREN B. MOORS (Received 23 August 2002; revised 27 August 2003) Communicated by A. J. Pryde Abstract A Banach space (X, || • ||) is said to be a dual differentiation space if every continuous convex function defined on a non-empty open convex subset A of X* that possesses weak* continuous subgradients at the points of a residual subset of A is Frechet differentiable on a dense subset of A. In this paper we show that if we assume the continuum hypothesis then there exists a dual differentiation space that does not admit an equivalent locally uniformly rotund norm. 2000 Mathematics subject classification: primary 46B20; secondary 58C20. Keywords and phrases: locally uniformly rotund norm, Bishop-Phelps set, Radon-Nikodym property. 1. Introduction Given a Banach space (X, || • ||) the Bishop-Phelps set (or BP-set for short) is the set {x* € X* : ||**|| =**(*) for some x e Bx], where Bx denotes the closed unit ball in (X, || • ||). The Bishop-Phelps theorem, [1] says that the BP-set is always dense in X*. In this paper we are interested in the case when the BP-set is residual (that is, contains a dense Gs subset) in X*. Certainly, it is known that if the dual norm is Frechet differentiable on a dense subset of X* then the BP-set is residual in X* (see the discussion in [13]). However, the converse question (that is, if the BP-set is residual in X* must the dual norm necessarily be Frechet differentiable on a dense subset of X*?) remains open.
    [Show full text]