Methods of Applied Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Methods of Applied Mathematics Methods of Applied Mathematics Todd Arbogast and Jerry L. Bona Department of Mathematics, and Institute for Computational Engineering and Sciences The University of Texas at Austin Copyright 1999{2001, 2004{2005, 2007{2008 (corrected version) by T. Arbogast and J. Bona. Contents Chapter 1. Preliminaries 5 1.1. Elementary Topology 5 1.2. Lebesgue Measure and Integration 13 1.3. Exercises 23 Chapter 2. Normed Linear Spaces and Banach Spaces 27 2.1. Basic Concepts and Definitions. 27 2.2. Some Important Examples 34 2.3. Hahn-Banach Theorems 43 2.4. Applications of Hahn-Banach 48 2.5. The Embedding of X into its Double Dual X∗∗ 52 2.6. The Open Mapping Theorem 53 2.7. Uniform Boundedness Principle 57 2.8. Compactness and Weak Convergence in a NLS 58 2.9. The Dual of an Operator 63 2.10. Exercises 66 Chapter 3. Hilbert Spaces 73 3.1. Basic Properties of Inner-Products 73 3.2. Best Approximation and Orthogonal Projections 75 3.3. The Dual Space 78 3.4. Orthonormal Subsets 79 3.5. Weak Convergence in a Hilbert Space 86 3.6. Exercises 87 Chapter 4. Spectral Theory and Compact Operators 89 4.1. Definitions of the Resolvent and Spectrum 90 4.2. Basic Spectral Theory in Banach Spaces 91 4.3. Compact Operators on a Banach Space 93 4.4. Bounded Self-Adjoint Linear Operators on a Hilbert Space 99 4.5. Compact Self-Adjoint Operators on a Hilbert Space 104 4.6. The Ascoli-Arzel`aTheorem 107 4.7. Sturm Liouville Theory 109 4.8. Exercises 122 Chapter 5. Distributions 125 5.1. The Notion of Generalized Functions 125 5.2. Test Functions 127 5.3. Distributions 129 5.4. Operations with Distributions 133 3 4 CONTENTS 5.5. Convergence of Distributions and Approximations to the Identity 138 5.6. Some Applications to Linear Differential Equations 140 5.7. Local Structure of D0 148 5.8. Exercises 148 Chapter 6. The Fourier Transform 151 d 6.1. The L1(R ) Theory 153 6.2. The Schwartz Space Theory 157 d 6.3. The L2(R ) Theory 162 6.4. The S0 Theory 164 6.5. Some Applications 170 6.6. Exercises 172 Chapter 7. Sobolev Spaces 177 7.1. Definitions and Basic Properties 177 d 7.2. Extensions from Ω to R 181 7.3. The Sobolev Imbedding Theorem 185 7.4. Compactness 191 7.5. The Hs Sobolev Spaces 193 7.6. A Trace Theorem 198 7.7. The W s;p(Ω) Sobolev Spaces 203 7.8. Exercises 204 Chapter 8. Boundary Value Problems 207 8.1. Second Order Elliptic Partial Differential Equations 207 8.2. A Variational Problem and Minimization of Energy 210 8.3. The Closed Range Theorem and Operators Bounded Below 213 8.4. The Lax-Milgram Theorem 215 8.5. Application to Second Order Elliptic Equations 219 8.6. Galerkin Approximations 224 8.7. Green's Functions 226 8.8. Exercises 229 Chapter 9. Differential Calculus in Banach Spaces and the Calculus of Variations 233 9.1. Differentiation 233 9.2. Fixed Points and Contractive Maps 241 9.3. Nonlinear Equations 245 9.4. Higher Derivatives 252 9.5. Extrema 256 9.6. The Euler-Lagrange Equations 259 9.7. Constrained Extrema and Lagrange Multipliers 265 9.8. Lower Semi-Continuity and Existence of Minima 269 9.9. Exercises 273 Bibliography 279 CHAPTER 1 Preliminaries We discuss in this Chapter some of the pertinent aspects of topology and measure theory that are needed in the course of the rest of the book. We treat this material as background, and well prepared students may wish to skip either of both topics. 1.1. Elementary Topology In applied mathematics, we are often faced with analyzing mathematical structures as they might relate to real-world phenomena. In applying mathematics, real phenomena or objects are conceptualized as abstract mathematical objects. Collections of such objects are called sets. The objects in a set of interest may also be related to each other; that is, there is some structure on the set. We call such structured sets spaces. Examples. (1) A vector space (algebraic structure). (2) The set of integers Z (number theoretical structure or arithmetic structure). (3) The set of real numbers R or the set of complex numbers C (algebraic and topological structure). We start the discussion of spaces by putting forward sets of \points" on which we can talk about the notions of convergence or limits and associated continuity of functions. A simple example is a set X with a notion of distance between any two points of X.A 1 sequence fxngn=1 ⊂ X converges to x 2 X if the distance from xn to x tends to 0 as n increases. This definition relies on the following formal concept. Definition. A metric or distance function on a set is a function d : X × X ! R satisfying: (1) (positivity) for any x; y 2 X, d(x; y) ≥ 0, and d(x; y) = 0 if and only if x = y; (2) (symmetry) for any x; y 2 X, d(x; y) = d(y; x); (3) (triangle inequality) for any x; y; z 2 X, d(x; y) ≤ d(x; z) + d(z; y). A metric space (X; d) is a set X together with an associated metric d : X × X ! R. d d Example. (R ; j · j) is a metric space, where for x; y 2 R , the distance from x to y is d 1=2 X 2 jx − yj = (xi − yi) : i=1 It turns out that the notion of distance or metric is sometimes stronger than what actu- ally appears in practice. The more fundamental concept upon which much of the mathematics developed here rests, is that of limits. That is, there are important spaces arising in applied mathematics that have well defined notions of limits, but these limiting processes are not com- patible with any metric. We shall see such examples later; let it suffice for now to motivate a weaker definition of limits. 5 6 1. PRELIMINARIES 1 A sequence of points fxngn=1 can be thought of as converging to x if every \neighborhood" of x contains all but finitely many of the xn, where a neighborhood is a subset of points containing x that we think of as \close" to x. Such a structure is called a topology. It is formalized as follows. Definition. A topological space (X; T ) is a nonempty set X of points with a family T of subsets, called open, with the properties: (1) X 2 T , ; 2 T ; (2) If !1;!2 2 T , then !1 \ !2 2 T ; S (3) If !α 2 T for all α in some index set I, then α2I !α 2 T . The family T is called a topology for X. Given A ⊂ X, we say that A is closed if its complement Ac = X n A = fx 2 X : x 62 Ag is open. Example. If X is any nonempty set, we can always define the two topologies: (1) T1 = f;;Xg, called the trivial topology; (2) T2 consisting of the collection of all subsets of X, called the discrete topology. Proposition 1.1. The sets ; and X are both open and closed. Any finite intersection of open sets is open. Any intersection of closed sets is closed. The union of any finite number of closed sets is closed. Proof. We need only show the last two statements, as the first two follow directly from the definitions. Let Aα ⊂ X be closed for α 2 I. Then one of deMorgan's laws gives that c \ [ c Aα = Aα is open. α2I α2I Finally, if J ⊂ I is finite, the other deMorgan law gives c [ \ c Aα = Aα is open. α2J α2J It is often convenient to define a simpler collection of open sets that immediately generates a topology. Definition. Given a topological space (X; T ) and an x 2 X, a base for the topology at x is a collection Bx of open sets containing x such that for any open E 3 x, there is B 2 Bx such that x 2 B ⊂ E: A base for the topology, B, is a collection of open sets that contains a base at x for all x 2 X. Proposition 1.2. A collection B of subsets of X is a base for a topology T if and only if (1) each x 2 X is contained in some B 2 B and (2) if x 2 B1 \ B2 for B1; B2 2 B, then there is some B3 2 B such that x 2 B3 ⊂ B1 \ B2. If (1) and (2) are valid, then T = fE ⊂ X : E is a union of subsets in Bg : Proof. ()) Since X and B1 \ B2 are open, (1) and (2) follow from the definition of a base at x. (() Let T be defined as above. Then ; 2 T (the vacuous union), X 2 T by (1), and arbitrary unions of sets in T are again in T . It remains to show the intersection property. Let 1.1. ELEMENTARY TOPOLOGY 7 E1;E2 2 T , and x 2 E1 \ E2 (if E1 \ E2 = ;, there is nothing to prove). Then there are sets B1;B2 2 B such that x 2 B1 ⊂ E1 ; x 2 B2 ⊂ E2 ; so x 2 B1 \ B2 ⊂ E1 \ E2 : Now (2) gives B3 2 B such that x 2 B3 ⊂ E1 \ E2 : Thus E1 \ E2 is a union of elements in B, and is thus in T . We remark that instead of using open sets, one can consider neighborhoods of points x 2 X, which are sets N 3 x such that there is an open set E satisfying x 2 E ⊂ N.
Recommended publications
  • Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
    p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X.
    [Show full text]
  • A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
    A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered.
    [Show full text]
  • ON SEQUENCE SPACES DEFINED by the DOMAIN of TRIBONACCI MATRIX in C0 and C Taja Yaying and Merve ˙Ilkhan Kara 1. Introduction Th
    Korean J. Math. 29 (2021), No. 1, pp. 25{40 http://dx.doi.org/10.11568/kjm.2021.29.1.25 ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF TRIBONACCI MATRIX IN c0 AND c Taja Yaying∗;y and Merve Ilkhan_ Kara Abstract. In this article we introduce tribonacci sequence spaces c0(T ) and c(T ) derived by the domain of a newly defined regular tribonacci matrix T: We give some topological properties, inclusion relations, obtain the Schauder basis and determine α−; β− and γ− duals of the spaces c0(T ) and c(T ): We characterize certain matrix classes (c0(T );Y ) and (c(T );Y ); where Y is any of the spaces c0; c or `1: Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space c0(T ): 1. Introduction Throughout the paper N = f0; 1; 2; 3;:::g and w is the space of all real valued sequences. By `1; c0 and c; we mean the spaces all bounded, null and convergent sequences, respectively. Also by `p; cs; cs0 and bs; we mean the spaces of absolutely p-summable, convergent, null and bounded series, respectively, where 1 ≤ p < 1: We write φ for the space of all sequences that terminate in zero. Moreover, we denote the space of all sequences of bounded variation by bv: A Banach space X is said to be a BK-space if it has continuous coordinates. The spaces `1; c0 and c are BK- spaces with norm kxk = sup jx j : Here and henceforth, for simplicity in notation, `1 k k the summation without limit runs from 0 to 1: Also, we shall use the notation e = (1; 1; 1;:::) and e(k) to be the sequence whose only non-zero term is 1 in the kth place for each k 2 N: Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix of real th entries.
    [Show full text]
  • Constructive Closed Range and Open Mapping Theorems in This Paper
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Indag. Mathem., N.S., 11 (4), 509-516 December l&2000 Constructive Closed Range and Open Mapping Theorems by Douglas Bridges and Hajime lshihara Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: d. [email protected] School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-12, Japan email: [email protected] Communicated by Prof. AS. Troelstra at the meeting of November 27,200O ABSTRACT We prove a version of the closed range theorem within Bishop’s constructive mathematics. This is applied to show that ifan operator Ton a Hilbert space has an adjoint and a complete range, then both T and T’ are sequentially open. 1. INTRODUCTION In this paper we continue our constructive exploration of the theory of opera- tors, in particular operators on a Hilbert space ([5], [6], [7]). We work entirely within Bishop’s constructive mathematics, which we regard as mathematics with intuitionistic logic. For discussions of the merits of this approach to mathematics - in particular, the multiplicity of its models - see [3] and [ll]. The technical background needed in our paper is found in [I] and [IO]. Our main aim is to prove the following result, the constructive Closed Range Theorem for operators on a Hilbert space (cf. [18], pages 99-103): Theorem 1. Let H be a Hilbert space, and T a linear operator on H such that T* exists and ran(T) is closed.
    [Show full text]
  • Social Choice Theory Christian List
    1 Social Choice Theory Christian List Social choice theory is the study of collective decision procedures. It is not a single theory, but a cluster of models and results concerning the aggregation of individual inputs (e.g., votes, preferences, judgments, welfare) into collective outputs (e.g., collective decisions, preferences, judgments, welfare). Central questions are: How can a group of individuals choose a winning outcome (e.g., policy, electoral candidate) from a given set of options? What are the properties of different voting systems? When is a voting system democratic? How can a collective (e.g., electorate, legislature, collegial court, expert panel, or committee) arrive at coherent collective preferences or judgments on some issues, on the basis of its members’ individual preferences or judgments? How can we rank different social alternatives in an order of social welfare? Social choice theorists study these questions not just by looking at examples, but by developing general models and proving theorems. Pioneered in the 18th century by Nicolas de Condorcet and Jean-Charles de Borda and in the 19th century by Charles Dodgson (also known as Lewis Carroll), social choice theory took off in the 20th century with the works of Kenneth Arrow, Amartya Sen, and Duncan Black. Its influence extends across economics, political science, philosophy, mathematics, and recently computer science and biology. Apart from contributing to our understanding of collective decision procedures, social choice theory has applications in the areas of institutional design, welfare economics, and social epistemology. 1. History of social choice theory 1.1 Condorcet The two scholars most often associated with the development of social choice theory are the Frenchman Nicolas de Condorcet (1743-1794) and the American Kenneth Arrow (born 1921).
    [Show full text]
  • The Heisenberg Group Fourier Transform
    THE HEISENBERG GROUP FOURIER TRANSFORM NEIL LYALL Contents 1. Fourier transform on Rn 1 2. Fourier analysis on the Heisenberg group 2 2.1. Representations of the Heisenberg group 2 2.2. Group Fourier transform 3 2.3. Convolution and twisted convolution 5 3. Hermite and Laguerre functions 6 3.1. Hermite polynomials 6 3.2. Laguerre polynomials 9 3.3. Special Hermite functions 9 4. Group Fourier transform of radial functions on the Heisenberg group 12 References 13 1. Fourier transform on Rn We start by presenting some standard properties of the Euclidean Fourier transform; see for example [6] and [4]. Given f ∈ L1(Rn), we define its Fourier transform by setting Z fb(ξ) = e−ix·ξf(x)dx. Rn n ih·ξ If for h ∈ R we let (τhf)(x) = f(x + h), then it follows that τdhf(ξ) = e fb(ξ). Now for suitable f the inversion formula Z f(x) = (2π)−n eix·ξfb(ξ)dξ, Rn holds and we see that the Fourier transform decomposes a function into a continuous sum of characters (eigenfunctions for translations). If A is an orthogonal matrix and ξ is a column vector then f[◦ A(ξ) = fb(Aξ) and from this it follows that the Fourier transform of a radial function is again radial. In particular the Fourier transform −|x|2/2 n of Gaussians take a particularly nice form; if G(x) = e , then Gb(ξ) = (2π) 2 G(ξ). In general the Fourier transform of a radial function can always be explicitly expressed in terms of a Bessel 1 2 NEIL LYALL transform; if g(x) = g0(|x|) for some function g0, then Z ∞ n 2−n n−1 gb(ξ) = (2π) 2 g0(r)(r|ξ|) 2 J n−2 (r|ξ|)r dr, 0 2 where J n−2 is a Bessel function.
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • Chapter 4 the Lebesgue Spaces
    Chapter 4 The Lebesgue Spaces In this chapter we study Lp-integrable functions as a function space. Knowledge on functional analysis required for our study is briefly reviewed in the first two sections. In Section 1 the notions of normed and inner product spaces and their properties such as completeness, separability, the Heine-Borel property and espe- cially the so-called projection property are discussed. Section 2 is concerned with bounded linear functionals and the dual space of a normed space. The Lp-space is introduced in Section 3, where its completeness and various density assertions by simple or continuous functions are covered. The dual space of the Lp-space is determined in Section 4 where the key notion of uniform convexity is introduced and established for the Lp-spaces. Finally, we study strong and weak conver- gence of Lp-sequences respectively in Sections 5 and 6. Both are important for applications. 4.1 Normed Spaces In this and the next section we review essential elements of functional analysis that are relevant to our study of the Lp-spaces. You may look up any book on functional analysis or my notes on this subject attached in this webpage. Let X be a vector space over R. A norm on X is a map from X ! [0; 1) satisfying the following three \axioms": For 8x; y; z 2 X, (i) kxk ≥ 0 and is equal to 0 if and only if x = 0; (ii) kαxk = jαj kxk, 8α 2 R; and (iii) kx + yk ≤ kxk + kyk. The pair (X; k·k) is called a normed vector space or normed space for short.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Mathematics and Materials
    IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics 10.1090/pcms/023 Mathematics and Materials IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics Rafe Mazzeo, Series Editor Mark J. Bowick, David Kinderlehrer, Govind Menon, and Charles Radin, Volume Editors. IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program 2010 Mathematics Subject Classification. Primary 82B05, 35Q70, 82B26, 74N05, 51P05, 52C17, 52C23. Library of Congress Cataloging-in-Publication Data Names: Bowick, Mark J., editor. | Kinderlehrer, David, editor. | Menon, Govind, 1973– editor. | Radin, Charles, 1945– editor. | Institute for Advanced Study (Princeton, N.J.) | Society for Industrial and Applied Mathematics. Title: Mathematics and materials / Mark J. Bowick, David Kinderlehrer, Govind Menon, Charles Radin, editors. Description: [Providence] : American Mathematical Society, [2017] | Series: IAS/Park City math- ematics series ; volume 23 | “Institute for Advanced Study.” | “Society for Industrial and Applied Mathematics.” | “This volume contains lectures presented at the Park City summer school on Mathematics and Materials in July 2014.” – Introduction. | Includes bibliographical references. Identifiers: LCCN 2016030010 | ISBN 9781470429195 (alk. paper) Subjects: LCSH: Statistical mechanics–Congresses.
    [Show full text]
  • Msc in Applied Mathematics
    MSc in Applied Mathematics Title: Past, Present and Challenges in Yang-Mills Theory Author: José Luis Tejedor Advisor: Sebastià Xambó Descamps Department: Departament de Matemàtica Aplicada II Academic year: 2011-2012 PAST, PRESENT AND CHALLENGES IN YANG-MILLS THEORY Jos´eLuis Tejedor June 11, 2012 Abstract In electrodynamics the potentials are not uniquely defined. The electromagnetic field is un- changed by gauge transformations of the potential. The electromagnestism is a gauge theory with U(1) as gauge group. C. N. Yang and R. Mills extended in 1954 the concept of gauge theory for abelian groups to non-abelian groups to provide an explanation for strong interactions. The idea of Yang-Mills was criticized by Pauli, as the quanta of the Yang-Mills field must be massless in order to maintain gauge invariance. The idea was set aside until 1960, when the concept of particles acquiring mass through symmetry breaking in massless theories was put forward. This prompted a significant restart of Yang-Mills theory studies that proved succesful in the formula- tion of both electroweak unification and quantum electrodynamics (QCD). The Standard Model combines the strong interaction with the unified electroweak interaction through the symmetry group SU(3) ⊗ SU(2) ⊗ U(1). Modern gauge theory includes lattice gauge theory, supersymme- try, magnetic monopoles, supergravity, instantons, etc. Concerning the mathematics, the field of Yang-Mills theories was included in the Clay Mathematics Institute's list of \Millenium Prize Problems". This prize-problem focuses, especially, on a proof of the conjecture that the lowest excitations of a pure four-dimensional Yang-Mills theory (i.e.
    [Show full text]
  • Functional Analysis Lecture Notes Chapter 3. Banach
    FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w.
    [Show full text]