Initial Embeddings in the Surreal Number Tree A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Properties of the Richard Thompson's Group F
ALGEBRAIC PROPERTIES OF THE RICHARD THOMPSON’S GROUP F AND ITS APPLICATIONS IN CRYPTOGRAPHY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY HAKAN YETER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS FEBRUARY 2021 Approval of the thesis: ALGEBRAIC PROPERTIES OF THE RICHARD THOMPSON’S GROUP F AND ITS APPLICATIONS IN CRYPTOGRAPHY submitted by HAKAN YETER in partial fulfillment of the requirements for the de- gree of Master of Science in Mathematics Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Yıldıray Ozan Head of Department, Mathematics Assoc. Prof. Dr. Mustafa Gökhan Benli Supervisor, Mathematics Department, METU Examining Committee Members: Assoc. Prof. Dr. Fatih Sulak Mathematics Department, Atilim University Assoc. Prof. Dr. Mustafa Gökhan Benli Mathematics Department, METU Assist. Prof. Dr. Burak Kaya Mathematics Department, METU Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Surname: Hakan Yeter Signature : iv ABSTRACT ALGEBRAIC PROPERTIES OF THE RICHARD THOMPSON’S GROUP F AND ITS APPLICATIONS IN CRYPTOGRAPHY Yeter, Hakan M.S., Department of Mathematics Supervisor: Assoc. Prof. Dr. Mustafa Gökhan Benli February 2021, 69 pages Thompson’s groups F; T and V , especially F , are widely studied groups in group theory. -
An Very Brief Overview of Surreal Numbers for Gandalf MM 2014
An very brief overview of Surreal Numbers for Gandalf MM 2014 Steven Charlton 1 History and Introduction Surreal numbers were created by John Horton Conway (of Game of Life fame), as a greatly simplified construction of an earlier object (Alling’s ordered field associated to the class of all ordinals, as constructed via modified Hahn series). The name surreal numbers was coined by Donald Knuth (of TEX and the Art of Computer Programming fame) in his novel ‘Surreal Numbers’ [2], where the idea was first presented. Surreal numbers form an ordered Field (Field with a capital F since surreal numbers aren’t a set but a class), and are in some sense the largest possible ordered Field. All other ordered fields, rationals, reals, rational functions, Levi-Civita field, Laurent series, superreals, hyperreals, . , can be found as subfields of the surreals. The definition/construction of surreal numbers leads to a system where we can talk about and deal with infinite and infinitesimal numbers as naturally and consistently as any ‘ordinary’ number. In fact it let’s can deal with even more ‘wonderful’ expressions 1 √ 1 ∞ − 1, ∞, ∞, ,... 2 ∞ in exactly the same way1. One large area where surreal numbers (or a slight generalisation of them) finds application is in the study and analysis of combinatorial games, and game theory. Conway discusses this in detail in his book ‘On Numbers and Games’ [1]. 2 Basic Definitions All surreal numbers are constructed iteratively out of two basic definitions. This is an wonderful illustration on how a huge amount of structure can arise from very simple origins. -
Even Ordinals and the Kunen Inconsistency∗
Even ordinals and the Kunen inconsistency∗ Gabriel Goldberg Evans Hall University Drive Berkeley, CA 94720 July 23, 2021 Abstract This paper contributes to the theory of large cardinals beyond the Kunen inconsistency, or choiceless large cardinal axioms, in the context where the Axiom of Choice is not assumed. The first part of the paper investigates a periodicity phenomenon: assuming choiceless large cardinal axioms, the properties of the cumulative hierarchy turn out to alternate between even and odd ranks. The second part of the paper explores the structure of ultrafilters under choiceless large cardinal axioms, exploiting the fact that these axioms imply a weak form of the author's Ultrapower Axiom [1]. The third and final part of the paper examines the consistency strength of choiceless large cardinals, including a proof that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. embedding j : Vλ+3 ! Vλ+3 implies that every subset of Vλ+1 has a sharp. We show that the existence of an elementary embedding from Vλ+2 to Vλ+2 is equiconsistent with the existence of an elementary embedding from L(Vλ+2) to L(Vλ+2) with critical point below λ. We show that assuming DC, the existence of an elementary embedding j : Vλ+3 ! Vλ+3 implies the consistency of ZFC + I0. By a recent result of Schlutzenberg [2], an elementary embedding from Vλ+2 to Vλ+2 does not suffice. 1 Introduction Assuming the Axiom of Choice, the large cardinal hierarchy comes to an abrupt halt in the vicinity of an !-huge cardinal. -
Cauchy, Infinitesimals and Ghosts of Departed Quantifiers 3
CAUCHY, INFINITESIMALS AND GHOSTS OF DEPARTED QUANTIFIERS JACQUES BAIR, PIOTR BLASZCZYK, ROBERT ELY, VALERIE´ HENRY, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TARAS KUDRYK, SEMEN S. KUTATELADZE, THOMAS MCGAFFEY, THOMAS MORMANN, DAVID M. SCHAPS, AND DAVID SHERRY Abstract. Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson’s frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz’s distinction be- tween assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robin- son’s framework, while Leibniz’s law of homogeneity with the im- plied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide paral- lel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz’s infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Eu- ler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infi- nite exponent. Such procedures have immediate hyperfinite ana- logues in Robinson’s framework, while in a Weierstrassian frame- work they can only be reinterpreted by means of paraphrases de- parting significantly from Euler’s own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson’s framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of de- arXiv:1712.00226v1 [math.HO] 1 Dec 2017 parted quantifiers in his work. -
Some Mathematical and Physical Remarks on Surreal Numbers
Journal of Modern Physics, 2016, 7, 2164-2176 http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Some Mathematical and Physical Remarks on Surreal Numbers Juan Antonio Nieto Facultad de Ciencias Fsico-Matemáticas de la Universidad Autónoma de Sinaloa, Culiacán, México How to cite this paper: Nieto, J.A. (2016) Abstract Some Mathematical and Physical Remarks on Surreal Numbers. Journal of Modern We make a number of observations on Conway surreal number theory which may be Physics, 7, 2164-2176. useful, for further developments, in both mathematics and theoretical physics. In http://dx.doi.org/10.4236/jmp.2016.715188 particular, we argue that the concepts of surreal numbers and matroids can be linked. Received: September 23, 2016 Moreover, we established a relation between the Gonshor approach on surreal num- Accepted: November 21, 2016 bers and tensors. We also comment about the possibility to connect surreal numbers Published: November 24, 2016 with supersymmetry. In addition, we comment about possible relation between sur- real numbers and fractal theory. Finally, we argue that the surreal structure may pro- Copyright © 2016 by author and Scientific Research Publishing Inc. vide a different mathematical tool in the understanding of singularities in both high This work is licensed under the Creative energy physics and gravitation. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Surreal Numbers, Supersymmetry, Cosmology 1. Introduction Surreal numbers are a fascinating subject in mathematics. Such numbers were invented, or discovered, by the mathematician John Horton Conway in the 70’s [1] [2]. -
An Introduction to Conway's Games and Numbers
AN INTRODUCTION TO CONWAY’S GAMES AND NUMBERS DIERK SCHLEICHER AND MICHAEL STOLL 1. Combinatorial Game Theory Combinatorial Game Theory is a fascinating and rich theory, based on a simple and intuitive recursive definition of games, which yields a very rich algebraic struc- ture: games can be added and subtracted in a very natural way, forming an abelian GROUP (§ 2). There is a distinguished sub-GROUP of games called numbers which can also be multiplied and which form a FIELD (§ 3): this field contains both the real numbers (§ 3.2) and the ordinal numbers (§ 4) (in fact, Conway’s definition gen- eralizes both Dedekind sections and von Neumann’s definition of ordinal numbers). All Conway numbers can be interpreted as games which can actually be played in a natural way; in some sense, if a game is identified as a number, then it is under- stood well enough so that it would be boring to actually play it (§ 5). Conway’s theory is deeply satisfying from a theoretical point of view, and at the same time it has useful applications to specific games such as Go [Go]. There is a beautiful microcosmos of numbers and games which are infinitesimally close to zero (§ 6), and the theory contains the classical and complete Sprague-Grundy theory on impartial games (§ 7). The theory was founded by John H. Conway in the 1970’s. Classical references are the wonderful books On Numbers and Games [ONAG] by Conway, and Win- ning Ways by Berlekamp, Conway and Guy [WW]; they have recently appeared in their second editions. -
The Role of the Interval Domain in Modern Exact Real Airthmetic
The Role of the Interval Domain in Modern Exact Real Airthmetic Andrej Bauer Iztok Kavkler Faculty of Mathematics and Physics University of Ljubljana, Slovenia Domains VIII & Computability over Continuous Data Types Novosibirsk, September 2007 Teaching theoreticians a lesson Recently I have been told by an anonymous referee that “Theoreticians do not like to be taught lessons.” and by a friend that “You should stop competing with programmers.” In defiance of this advice, I shall talk about the lessons I learned, as a theoretician, in programming exact real arithmetic. The spectrum of real number computation slow fast Formally verified, Cauchy sequences iRRAM extracted from streams of signed digits RealLib proofs floating point Moebius transformtions continued fractions Mathematica "theoretical" "practical" I Common features: I Reals are represented by successive approximations. I Approximations may be computed to any desired accuracy. I State of the art, as far as speed is concerned: I iRRAM by Norbert Muller,¨ I RealLib by Branimir Lambov. What makes iRRAM and ReaLib fast? I Reals are represented by sequences of dyadic intervals (endpoints are rationals of the form m/2k). I The approximating sequences need not be nested chains of intervals. I No guarantee on speed of converge, but arbitrarily fast convergence is possible. I Previous approximations are not stored and not reused when the next approximation is computed. I Each next approximation roughly doubles the amount of work done. The theory behind iRRAM and RealLib I Theoretical models used to design iRRAM and RealLib: I Type Two Effectivity I a version of Real RAM machines I Type I representations I The authors explicitly reject domain theory as a suitable computational model. -
Handout from Today's Lecture
MA532 Lecture Timothy Kohl Boston University April 23, 2020 Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 1 / 26 Cardinal Arithmetic Recall that one may define addition and multiplication of ordinals α = ot(A, A) β = ot(B, B ) α + β and α · β by constructing order relations on A ∪ B and B × A. For cardinal numbers the foundations are somewhat similar, but also somewhat simpler since one need not refer to orderings. Definition For sets A, B where |A| = α and |B| = β then α + β = |(A × {0}) ∪ (B × {1})|. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 2 / 26 The curious part of the definition is the two sets A × {0} and B × {1} which can be viewed as subsets of the direct product (A ∪ B) × {0, 1} which basically allows us to add |A| and |B|, in particular since, in the usual formula for the size of the union of two sets |A ∪ B| = |A| + |B| − |A ∩ B| which in this case is bypassed since, by construction, (A × {0}) ∩ (B × {1})= ∅ regardless of the nature of A ∩ B. Timothy Kohl (Boston University) MA532 Lecture April 23, 2020 3 / 26 Definition For sets A, B where |A| = α and |B| = β then α · β = |A × B|. One immediate consequence of these definitions is the following. Proposition If m, n are finite ordinals, then as cardinals one has |m| + |n| = |m + n|, (where the addition on the right is ordinal addition in ω) meaning that ordinal addition and cardinal addition agree. Proof. The simplest proof of this is to define a bijection f : (m × {0}) ∪ (n × {1}) → m + n by f (hr, 0i)= r for r ∈ m and f (hs, 1i)= m + s for s ∈ n. -
Dyadic Rationals and Surreal Number Theory C
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 5 Ser. IV (Sep. – Oct. 2020), PP 35-43 www.iosrjournals.org Dyadic Rationals and Surreal Number Theory C. Avalos-Ramos C.U.C.E.I. Universidad de Guadalajara, Guadalajara, Jalisco, México J. A. Félix-Algandar Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán, Sinaloa, México. J. A. Nieto Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Sinaloa, 80010, Culiacán, Sinaloa, México. Abstract We establish a number of properties of the dyadic rational numbers associated with surreal number theory. In particular, we show that a two parameter function of dyadic rationals can give all the trees of n-days in surreal number formalism. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 07-10-2020 Date of Acceptance: 22-10-2020 --------------------------------------------------------------------------------------------------------------------------------------- I. Introduction In mathematics, from number theory history [1], one learns that historically, roughly speaking, the starting point was the natural numbers N and after a centuries of though evolution one ends up with the real numbers from which one constructs the differential and integral calculus. Surprisingly in 1973 Conway [2] (see also Ref. [3]) developed the surreal numbers structure which contains no only the real numbers , but also the hypereals and other numerical structures. Consider the set (1) and call and the left and right sets of , respectively. Surreal numbers are defined in terms of two axioms: Axiom 1. Every surreal number corresponds to two sets and of previously created numbers, such that no member of the left set is greater or equal to any member of the right set . -
On Numbers, Germs, and Transseries
On Numbers, Germs, and Transseries Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven Abstract Germs of real-valued functions, surreal numbers, and transseries are three ways to enrich the real continuum by infinitesimal and infinite quantities. Each of these comes with naturally interacting notions of ordering and deriva- tive. The category of H-fields provides a common framework for the relevant algebraic structures. We give an exposition of our results on the model theory of H-fields, and we report on recent progress in unifying germs, surreal num- bers, and transseries from the point of view of asymptotic differential algebra. Contemporaneous with Cantor's work in the 1870s but less well-known, P. du Bois- Reymond [10]{[15] had original ideas concerning non-Cantorian infinitely large and small quantities [34]. He developed a \calculus of infinities” to deal with the growth rates of functions of one real variable, representing their \potential infinity" by an \actual infinite” quantity. The reciprocal of a function tending to infinity is one which tends to zero, hence represents an \actual infinitesimal”. These ideas were unwelcome to Cantor [39] and misunderstood by him, but were made rigorous by F. Hausdorff [46]{[48] and G. H. Hardy [42]{[45]. Hausdorff firmly grounded du Bois-Reymond's \orders of infinity" in Cantor's set-theoretic universe [38], while Hardy focused on their differential aspects and introduced the logarithmico-exponential functions (short: LE-functions). This led to the concept of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]{[67] and Boshernitzan [18]{[21]. For the role of Hardy fields in o-minimality see [61]. -
A New Order Theory of Set Systems and Better Quasi-Orderings
03 Progress in Informatics, No. 9, pp.9–18, (2012) 9 Special issue: Theoretical computer science and discrete mathematics Research Paper A new order theory of set systems and better quasi-orderings Yohji AKAMA1 1Mathematical Institute, Tohoku University ABSTRACT By reformulating a learning process of a set system L as a game between Teacher (presenter of data) and Learner (updater of abstract independent set), we define the order type dim L of L to be the order type of the game tree. The theory of this new order type and continuous, monotone function between set systems corresponds to the theory of well quasi-orderings (WQOs). As Nash-Williams developed the theory of WQOs to the theory of better quasi- orderings (BQOs), we introduce a set system that has order type and corresponds to a BQO. We prove that the class of set systems corresponding to BQOs is closed by any monotone function. In (Shinohara and Arimura. “Inductive inference of unbounded unions of pattern languages from positive data.” Theoretical Computer Science, pp. 191–209, 2000), for any set system L, they considered the class of arbitrary (finite) unions of members of L.Fromview- point of WQOs and BQOs, we characterize the set systems L such that the class of arbitrary (finite) unions of members of L has order type. The characterization shows that the order structure of the set system L with respect to the set inclusion is not important for the result- ing set system having order type. We point out continuous, monotone function of set systems is similar to positive reduction to Jockusch-Owings’ weakly semirecursive sets. -
Normal Tree Orders for Infinite Graphs
Normal tree orders for infinite graphs J.-M. Brochet and R. Diestel A well-founded tree T defined on the vertex set of a graph G is called normal if the endvertices of any edge of G are comparable in T . We study how normal trees can be used to describe the structure of infinite graphs. In particular, we extend Jung’s classical existence theorem for trees of height ω to trees of arbitrary height. Applications include a structure theorem for graphs without large complete topological minors. A number of open problems are suggested. 1. Introduction: normal spanning trees The aim of this paper is to see how a classical and powerful structural device for the study of countable graphs, the notion of a normal spanning tree, can be made available more generally. The existence of such spanning trees, while trivial in the finite case (where they are better known as depth-first search trees), is in general limited to countable graphs. By generalizing the graph theoretical trees involved to order theoretical trees, a concept better suited to express uncountably long ‘ends’, we shall be able to extend the classical existence theorems for normal trees to arbitrary cardinalities, while retaining much of their original strength. Throughout the paper, G will denote an arbitrary connected graph. Con- sider a tree T ⊆ G, with a root r, say. If T spans G, the choice of r imposes a partial order on the vertex set V (G) of G: write x 6 y if x lies on the unique r–y path in T .