SURREAL TIME and ULTRATASKS HAIDAR AL-DHALIMY Department of Philosophy, University of Minnesota and CHARLES J

Total Page:16

File Type:pdf, Size:1020Kb

SURREAL TIME and ULTRATASKS HAIDAR AL-DHALIMY Department of Philosophy, University of Minnesota and CHARLES J THE REVIEW OF SYMBOLIC LOGIC, Page 1 of 12 SURREAL TIME AND ULTRATASKS HAIDAR AL-DHALIMY Department of Philosophy, University of Minnesota and CHARLES J. GEYER School of Statistics, University of Minnesota Abstract. This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (a sequence which includes one task done for each ordinal number—thus a proper class of them). We argue that the surreal numbers are in some respects a better model of the temporal continuum than the real numbers as defined in mainstream mathematics, and that surreal time and hypertasks are mathematically possible. §1. Introduction. To perform a hypertask is to complete an uncountable sequence of tasks in a finite length of time. Each task is taken to require a nonzero interval of time, with the intervals being pairwise disjoint. Clark & Read (1984) claim to “show that no hypertask can be performed” (p. 387). What they in fact show is the impossibility of a situation in which both (i) a hypertask is performed and (ii) time has the structure of the real number system as conceived of in mainstream mathematics—or, as we will say, time is R-like. However, they make the argument overly complicated. THEOREM 1.1. It is not possible, in R-like time, to perform a hypertask. Proof. Let t be the finite amount of time it takes to accomplish all of the tasks. For each integer n,atmostnt of them can take time greater than 1/n. All tasks take some nonzero time. Thus, the set of all tasks is a countable union of finite sets, which is countable. This kind of argument is familiar from many areas of mathematics. Clark & Read cite Cantor without stating how simple the argument really is. Theorem 1.1 relies on the properties of the real numbers. If one uses the surreal num- bers (Conway, 2001, first edition 1976) instead, then it is possible to perform not only a hypertask, but also what we will call an ultratask,1 which includes the doing of one task for each ordinal number.2 Ultratasks are a kind of hypertask, since there are uncountably many ordinals. We will call time that is structured like the surreal numbers surreal time. There are many different notions of possibility: there are various kinds of logical possibility (corresponding to different logics), various kinds of mathematical possibility Received: May 13, 2016. 1 Ultratasks have no relation to ultrafilters or ultraproducts. Szabó (2010) defines “ultratask” differently. 2 Thanks to Roy Cook for the idea of an ultratask. c Association for Symbolic Logic, 2016 1 doi:10.1017/S1755020316000289 2 HAIDAR AL-DHALIMY AND CHARLES J. GEYER (classical ones, constructive ones, intuitionistic ones, and others), and there are conceptual, epistemic, nomic, physical,andmetaphysical notions of possibility. Our main claim is that surreal time and hypertasks are mathematically possible, in the sense of being compatible with the truths of classical mathematics.3 This kind of mathematical possibility will be indicated by the subscript cm.4 THEOREM 1.2. It is possiblecm, in surreal time, to perform an ultratask. Proof. For each ordinal α, start the α-th task at time α/(α + 1). Readers who are not familiar with the surreal numbers may not understand this proof. We explain the surreal numbers in §2 and §4, and expand and discuss the proof in §3. §2. Surreal numbers. The surreal number system No (Conway, 2001) is a totally ordered Field with a capital “F” (Conway, 2001, chap. 1); Conway capitalizes names for mathematical structures whose domains are proper classes. No includes the real number system R as a subfield, but is much larger. No includes (as a subclass) the proper class On of all ordinals. The real numbers and ordinal numbers, considered as elements of No,have all of the properties of the real numbers and ordinal numbers from ordinary mathematics (Conway, 2001, chap. 2). No is also a real-closed Field (Conway, 2001, chap. 4), meaning No has all the first-order properties that R has. Hence, if α is a nonzero√ surreal number, then so is 1/α,andifα is a non-negative surreal number, then so is α. Any arithmetic and algebraic operations that take real numbers to real numbers also take surreal numbers√ to surreal numbers. In particular, if α is a nonzero ordinal, then α − 1, 1/α,and α are surreal numbers. The proof of Theorem 1.1 would not work if time can take values in the surreal numbers. It would go wrong because it assumes non-first-order properties of R that No does not share. In particular, it assumes that the sequence 1/nn∈N converges to zero—although this holds in the real numbers, in the surreal numbers this sequence does not converge to zero. There are many infinitesimal surreal numbers smaller than 1/n for all integers n,for example, 1/α for any infinite ordinal α. Formally, it is not true in No that for every ε>0 there is a natural number N such that 1/n <εfor all natural numbers n ≥ N. It is not true whenever ε is infinitesimal—this, in fact, is the meaning of the word ‘infinitesimal’. §3. Ultratasks. Recall that an ultratask includes the doing of one task Tα for each ordinal α. If time takes values in the surreal numbers, then there is an easy way to do an ultratask in one unit of time.5 Define the function f by x f (x) = , x ≥ 0. (1) x + 1 This function makes sense for surreal numbers x just like for real numbers x. We could replace f by any other algebraic function taking non-negative argument values that is strictly increasing and bounded above by a real number. Start Tα at time f (α). 3 It suffices here to include NBG with Global Choice among “classical” mathematics. 4 We take it that whatever is possiblecm is also logically possible (in the sense of classical logic), but not vice versa. 5 In fact, an ultratask—or even a separate ultratask for each ordinal—could be performed in an arbitrarily short positive interval of surreal time. SURREAL TIME AND ULTRATASKS 3 The length of time between the start of Tα and the start of Tα+1 is α + 1 α (α + 1)2 − α(α + 2) 1 − = = . (2) α + 2 α + 1 (α + 1)(α + 2) (α + 1)(α + 2) The operations here are the Field operations for No, which do not agree with the usual ordinal arithmetic used in set theory (Conway, 2001, p. 28). The addition and multiplica- tion operations for No when applied to ordinals are called the natural or Hessenberg or Hessenberg–Conway sum and product in set theory. There are no subtraction or division operations defined for ordinals except the Conway ones, which are the Field operations for No. If α is an infinite ordinal, then the length of time (2) is infinitesimal, but it is a strictly positive surreal number. If one likes rests (staccato performance, Clark & Read, 1984, their §3), then one may (optionally) take part of this interval to do Tα and the remainder of the interval to rest. As we shall see in §6, there may be rests even if one does not have rests of the kind just described. §4. Dedekind cuts. Is the theory in §3 philosophically satisfying? Is it philosophically legitimate to consider surreal time? Does any philosophical principle dictate that time is necessarily R-like, in which case, by Theorem 1.1, no hypertask would be doable in any possible world in which there is time? The real numbers can be constructed as Dedekind cuts of the rational numbers. Dedekind cuts were indeed a great idea (Reck, 2012), but if they are such a great idea, why stop at the rationals? What about Dedekind cuts of the real numbers? Why aren’t they a great idea too? We raise this issue because it leads to a construction of the surreal numbers. We quote Conway (2001, pp. 3–4): Let us see how those who were good at constructing numbers have approached this problem in the past. Dedekind (and before him the author—thought to be Eudoxus—of the fifth book of Euclid) constructed the real numbers from the rationals. His method was to divide the rationals into two sets L and R in such a way that no number of L was greater than any number of R, and use this “section” to define a new number {L|R} in the case that neither L nor R had an extremal point. His method produces a logically sound collection of real numbers (if we ignore some objections on the grounds of ineffectivity, etc.), but has been criticised on several counts. Perhaps the most important is that the rationals are supposed to have been already constructed in some other way, and yet are “reconstructed” as certain real numbers. The distinction between the “old” and “new” rationals seems artificial but essential. Cantor constructed the infinite ordinal numbers. Supposing the inte- gers 1, 2, 3, ... given, he observed that their order-type ω was a new (and infinite) number greater than all of them. Then the order-type of {1, 2, 3,...,ω} is a still greater number ω+1, and so on, and on, and on.
Recommended publications
  • An Very Brief Overview of Surreal Numbers for Gandalf MM 2014
    An very brief overview of Surreal Numbers for Gandalf MM 2014 Steven Charlton 1 History and Introduction Surreal numbers were created by John Horton Conway (of Game of Life fame), as a greatly simplified construction of an earlier object (Alling’s ordered field associated to the class of all ordinals, as constructed via modified Hahn series). The name surreal numbers was coined by Donald Knuth (of TEX and the Art of Computer Programming fame) in his novel ‘Surreal Numbers’ [2], where the idea was first presented. Surreal numbers form an ordered Field (Field with a capital F since surreal numbers aren’t a set but a class), and are in some sense the largest possible ordered Field. All other ordered fields, rationals, reals, rational functions, Levi-Civita field, Laurent series, superreals, hyperreals, . , can be found as subfields of the surreals. The definition/construction of surreal numbers leads to a system where we can talk about and deal with infinite and infinitesimal numbers as naturally and consistently as any ‘ordinary’ number. In fact it let’s can deal with even more ‘wonderful’ expressions 1 √ 1 ∞ − 1, ∞, ∞, ,... 2 ∞ in exactly the same way1. One large area where surreal numbers (or a slight generalisation of them) finds application is in the study and analysis of combinatorial games, and game theory. Conway discusses this in detail in his book ‘On Numbers and Games’ [1]. 2 Basic Definitions All surreal numbers are constructed iteratively out of two basic definitions. This is an wonderful illustration on how a huge amount of structure can arise from very simple origins.
    [Show full text]
  • Cauchy, Infinitesimals and Ghosts of Departed Quantifiers 3
    CAUCHY, INFINITESIMALS AND GHOSTS OF DEPARTED QUANTIFIERS JACQUES BAIR, PIOTR BLASZCZYK, ROBERT ELY, VALERIE´ HENRY, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TARAS KUDRYK, SEMEN S. KUTATELADZE, THOMAS MCGAFFEY, THOMAS MORMANN, DAVID M. SCHAPS, AND DAVID SHERRY Abstract. Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson’s frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz’s distinction be- tween assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robin- son’s framework, while Leibniz’s law of homogeneity with the im- plied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide paral- lel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz’s infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Eu- ler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infi- nite exponent. Such procedures have immediate hyperfinite ana- logues in Robinson’s framework, while in a Weierstrassian frame- work they can only be reinterpreted by means of paraphrases de- parting significantly from Euler’s own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson’s framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of de- arXiv:1712.00226v1 [math.HO] 1 Dec 2017 parted quantifiers in his work.
    [Show full text]
  • Some Mathematical and Physical Remarks on Surreal Numbers
    Journal of Modern Physics, 2016, 7, 2164-2176 http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Some Mathematical and Physical Remarks on Surreal Numbers Juan Antonio Nieto Facultad de Ciencias Fsico-Matemáticas de la Universidad Autónoma de Sinaloa, Culiacán, México How to cite this paper: Nieto, J.A. (2016) Abstract Some Mathematical and Physical Remarks on Surreal Numbers. Journal of Modern We make a number of observations on Conway surreal number theory which may be Physics, 7, 2164-2176. useful, for further developments, in both mathematics and theoretical physics. In http://dx.doi.org/10.4236/jmp.2016.715188 particular, we argue that the concepts of surreal numbers and matroids can be linked. Received: September 23, 2016 Moreover, we established a relation between the Gonshor approach on surreal num- Accepted: November 21, 2016 bers and tensors. We also comment about the possibility to connect surreal numbers Published: November 24, 2016 with supersymmetry. In addition, we comment about possible relation between sur- real numbers and fractal theory. Finally, we argue that the surreal structure may pro- Copyright © 2016 by author and Scientific Research Publishing Inc. vide a different mathematical tool in the understanding of singularities in both high This work is licensed under the Creative energy physics and gravitation. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Surreal Numbers, Supersymmetry, Cosmology 1. Introduction Surreal numbers are a fascinating subject in mathematics. Such numbers were invented, or discovered, by the mathematician John Horton Conway in the 70’s [1] [2].
    [Show full text]
  • Do We Need Number Theory? II
    Do we need Number Theory? II Václav Snášel What is a number? MCDXIX |||||||||||||||||||||| 664554 0xABCD 01717 010101010111011100001 푖푖 1 1 1 1 1 + + + + + ⋯ 1! 2! 3! 4! VŠB-TUO, Ostrava 2014 2 References • Z. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, 1986 • John Vince, Quaternions for Computer Graphics, Springer 2011 • John C. Baez, The Octonions, Bulletin of the American Mathematical Society 2002, 39 (2): 145–205 • C.C. Chang and H.J. Keisler, Model Theory, North-Holland, 1990 • Mathématiques & Arts, Catalogue 2013, Exposants ESMA • А.Т.Фоменко, Математика и Миф Сквозь Призму Геометрии, http://dfgm.math.msu.su/files/fomenko/myth-sec6.php VŠB-TUO, Ostrava 2014 3 Images VŠB-TUO, Ostrava 2014 4 Number construction VŠB-TUO, Ostrava 2014 5 Algebraic number An algebraic number field is a finite extension of ℚ; an algebraic number is an element of an algebraic number field. Ring of integers. Let 퐾 be an algebraic number field. Because 퐾 is of finite degree over ℚ, every element α of 퐾 is a root of monic polynomial 푛 푛−1 푓 푥 = 푥 + 푎1푥 + … + 푎1 푎푖 ∈ ℚ If α is root of polynomial with integer coefficient, then α is called an algebraic integer of 퐾. VŠB-TUO, Ostrava 2014 6 Algebraic number Consider more generally an integral domain 퐴. An element a ∈ 퐴 is said to be a unit if it has an inverse in 퐴; we write 퐴∗ for the multiplicative group of units in 퐴. An element 푝 of an integral domain 퐴 is said to be irreducible if it is neither zero nor a unit, and can’t be written as a product of two nonunits.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Do Simple Infinitesimal Parts Solve Zeno's Paradox of Measure?
    Do Simple Infinitesimal Parts Solve Zeno's Paradox of Measure?∗ Lu Chen (Forthcoming in Synthese) Abstract In this paper, I develop an original view of the structure of space|called infinitesimal atomism|as a reply to Zeno's paradox of measure. According to this view, space is composed of ultimate parts with infinitesimal size, where infinitesimals are understood within the framework of Robinson's (1966) nonstandard analysis. Notably, this view satisfies a version of additivity: for every region that has a size, its size is the sum of the sizes of its disjoint parts. In particular, the size of a finite region is the sum of the sizes of its infinitesimal parts. Although this view is a coherent approach to Zeno's paradox and is preferable to Skyrms's (1983) infinitesimal approach, it faces both the main problem for the standard view (the problem of unmeasurable regions) and the main problem for finite atomism (Weyl's tile argument), leaving it with no clear advantage over these familiar alternatives. Keywords: continuum; Zeno's paradox of measure; infinitesimals; unmeasurable ∗Special thanks to Jeffrey Russell and Phillip Bricker for their extensive feedback on early drafts of the paper. Many thanks to the referees of Synthese for their very helpful comments. I'd also like to thank the participants of Umass dissertation seminar for their useful feedback on my first draft. 1 regions; Weyl's tile argument 1 Zeno's Paradox of Measure A continuum, such as the region of space you occupy, is commonly taken to be indefinitely divisible. But this view runs into Zeno's famous paradox of measure.
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]
  • ~Umbers the BOO K O F Umbers
    TH E BOOK OF ~umbers THE BOO K o F umbers John H. Conway • Richard K. Guy c COPERNICUS AN IMPRINT OF SPRINGER-VERLAG © 1996 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1996 All rights reserved. No part of this publication may be reproduced, stored in a re­ trieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Published in the United States by Copernicus, an imprint of Springer-Verlag New York, Inc. Copernicus Springer-Verlag New York, Inc. 175 Fifth Avenue New York, NY lOOlO Library of Congress Cataloging in Publication Data Conway, John Horton. The book of numbers / John Horton Conway, Richard K. Guy. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-4612-8488-8 e-ISBN-13: 978-1-4612-4072-3 DOl: 10.l007/978-1-4612-4072-3 1. Number theory-Popular works. I. Guy, Richard K. II. Title. QA241.C6897 1995 512'.7-dc20 95-32588 Manufactured in the United States of America. Printed on acid-free paper. 9 8 765 4 Preface he Book ofNumbers seems an obvious choice for our title, since T its undoubted success can be followed by Deuteronomy,Joshua, and so on; indeed the only risk is that there may be a demand for the earlier books in the series. More seriously, our aim is to bring to the inquisitive reader without particular mathematical background an ex­ planation of the multitudinous ways in which the word "number" is used.
    [Show full text]
  • The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 Email: [email protected]
    The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: [email protected] In the last issue of SIGACT NEWS (Volume 45, No. 3) there was a review of Martin Davis's book The Universal Computer. The road from Leibniz to Turing that was badly typeset. This was my fault. We reprint the review, with correct typesetting, in this column. In this column we review the following books. 1. The Universal Computer. The road from Leibniz to Turing by Martin Davis. Reviewed by Haim Kilov. This book has stories of the personal, social, and professional lives of Leibniz, Boole, Frege, Cantor, G¨odel,and Turing, and explains some of the essentials of their thought. The mathematics is accessible to a non-expert, although some mathematical maturity, as opposed to specific knowledge, certainly helps. 2. From Zero to Infinity by Constance Reid. Review by John Tucker Bane. This is a classic book on fairly elementary math that was reprinted in 2006. The author tells us interesting math and history about the numbers 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; e; @0. 3. The LLL Algorithm Edited by Phong Q. Nguyen and Brigitte Vall´ee. Review by Krishnan Narayanan. The LLL algorithm has had applications to both pure math and very applied math. This collection of articles on it highlights both. 4. Classic Papers in Combinatorics Edited by Ira Gessel and Gian-Carlo Rota. Re- view by Arya Mazumdar. This book collects together many of the classic papers in combinatorics, including those of Ramsey and Hales-Jewitt.
    [Show full text]
  • Combinatorial Game Theory, Well-Tempered Scoring Games, and a Knot Game
    Combinatorial Game Theory, Well-Tempered Scoring Games, and a Knot Game Will Johnson June 9, 2011 Contents 1 To Knot or Not to Knot 4 1.1 Some facts from Knot Theory . 7 1.2 Sums of Knots . 18 I Combinatorial Game Theory 23 2 Introduction 24 2.1 Combinatorial Game Theory in general . 24 2.1.1 Bibliography . 27 2.2 Additive CGT specifically . 28 2.3 Counting moves in Hackenbush . 34 3 Games 40 3.1 Nonstandard Definitions . 40 3.2 The conventional formalism . 45 3.3 Relations on Games . 54 3.4 Simplifying Games . 62 3.5 Some Examples . 66 4 Surreal Numbers 68 4.1 Surreal Numbers . 68 4.2 Short Surreal Numbers . 70 4.3 Numbers and Hackenbush . 77 4.4 The interplay of numbers and non-numbers . 79 4.5 Mean Value . 83 1 5 Games near 0 85 5.1 Infinitesimal and all-small games . 85 5.2 Nimbers and Sprague-Grundy Theory . 90 6 Norton Multiplication and Overheating 97 6.1 Even, Odd, and Well-Tempered Games . 97 6.2 Norton Multiplication . 105 6.3 Even and Odd revisited . 114 7 Bending the Rules 119 7.1 Adapting the theory . 119 7.2 Dots-and-Boxes . 121 7.3 Go . 132 7.4 Changing the theory . 139 7.5 Highlights from Winning Ways Part 2 . 144 7.5.1 Unions of partizan games . 144 7.5.2 Loopy games . 145 7.5.3 Mis`eregames . 146 7.6 Mis`ereIndistinguishability Quotients . 147 7.7 Indistinguishability in General . 148 II Well-tempered Scoring Games 155 8 Introduction 156 8.1 Boolean games .
    [Show full text]
  • Non-Standard Numbers and TGD Contents
    CONTENTS 1 Non-Standard Numbers and TGD M. Pitk¨anen,January 29, 2011 Email: [email protected]. http://tgdtheory.com/public_html/. Recent postal address: K¨oydenpunojankatu 2 D 11, 10940, Hanko, Finland. Contents 1 Introduction 2 2 Brief summary of basic concepts from the points of view of physics 3 3 Could the generalized scalars be useful in physics? 5 3.1 Are reals somehow special and where to stop? . .5 3.2 Can one generalize calculus? . .5 3.3 Generalizing general covariance . .6 3.4 The notion of precision and generalized scalars . .7 3.5 Further questions about physical interpretation . .7 4 How generalized scalars and infinite primes relate? 8 4.1 Explicit realization for the function algebra associated with infinite rationals . 10 4.2 Generalization of the notion of real by bringing in infinite number of real units . 11 4.3 Finding the roots of polynomials defined by infinite primes . 12 5 Further comments about physics related articles 13 5.1 Quantum Foundations: Is Probability Ontological . 13 5.2 Group Invariant Entanglements in Generalized Tensor Products . 15 1. Introduction 2 Abstract The chapter represents a comparison of ultrapower fields (loosely surreals, hyper-reals, long line) and number fields generated by infinite primes having a physical interpretation in Topo- logical Geometrodynamics. Ultrapower fields are discussed in very physicist friendly manner in the articles of Elemer Rosinger and these articles are taken as a convenient starting point. The physical interpretations and principles proposed by Rosinger are considered against the back- ground provided by TGD. The construction of ultrapower fields is associated with physics using the close analogies with gauge theories, gauge invariance, and with the singularities of classical fields.
    [Show full text]
  • The Journal of the Mega Society Issue #200, January 2016
    Noesis The Journal of the Mega Society Issue #200, January 2016 Contents About the Mega Society/Copyright Notice 2 Editorial Kevin Langdon 3 Viruses Create More Biodiversity Than David Seaborg 4 Any Other Comparable Taxon Interview with Rick Rosner (Part Five) Rick Rosner & Scott Douglas Jacobsen 22 New Member Introduction Sam Thompson 41 What Does AI Want? May-Tzu 42 Dr. Capgras Before the Mirrors May-Tzu 44 About the Mega Society The Mega Society was founded by Dr. Ronald K. Hoeflin in 1982. The 606 Society (6 in 106), founded by Christopher Harding, was incorporated into the new society and those with IQ scores on the Langdon Adult Intelligence Test (LAIT) of 173 or more were also invited to join. (The LAIT qualifying score was subsequently raised to 175; official scoring of the LAIT terminated at the end of 1993, after the test was compromised). A number of different tests were accepted by 606 and during the first few years of Mega’s existence. Later, the LAIT and Dr. Hoeflin’s Mega Test became the sole official entrance tests, by vote of the membership. Later, Dr. Hoeflin’s Titan Test was added. (The Mega was also compromised, so scores after 1994 are currently not accepted; the Mega and Titan cutoff is now 43—but either the LAIT cutoff or the cutoff on Dr. Hoeflin’s tests will need to be changed, as they are not equivalent.) Mega publishes this irregularly-timed journal. The society also has a (low-traffic) members-only e-mail list. Mega members, please contact the Editor to be added to the list.
    [Show full text]