Metagenomic Analysis of Bacterial Communities on Dokdo Island

Total Page:16

File Type:pdf, Size:1020Kb

Metagenomic Analysis of Bacterial Communities on Dokdo Island J. Gen. Appl. Microbiol., 60, 65‒74 (2014) doi 10.2323/jgam.60.65 ©2014 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper Metagenomic analysis of bacterial communities on Dokdo Island (Received September 11, 2013; Accepted December 27, 2013) Ye-Eun Kim,1,† Hyeokjun Yoon,1,† Miae Kim,1 Yoon-Jong Nam,1 Hyun Kim,1 Yeonggyo Seo,1 Gyeong-Min Lee,1 Young Ja Kim,2 Won-Sik Kong,3 Jong-Guk Kim,1,* and Young-Bae Seu1,* 1 Department of Life Sciences and Biotechnology, Kyungpook National University, South Korea 2 Korea Environmental Industry & Technology Institute, South Korea 3 National Institute of Horticultural & Herbal Science, RDA, South Korea Dokdo, located east of the mainland of South Ko- dition, the percentage of the genus Mycobacterium rea, is a volcanic island designated as a natural mon- (of the phylum Actinobacteria) was nearly three ument of South Korea due to its ecological value. times higher in Seodo than Dongdo, and the propor- Dokdo is divided into Dongdo and Seodo, islands tion of the genus Gaiella was about 3.7 times higher with geological differences. The soil bacterial com- in Dongdo than Seodo. Overall, through the metage- munities on Dokdo (Dongdo and Seodo) were ana- nomic analysis, the number of species identified in lyzed using the pyrosequencing method. There were Dongdo and Seodo was 1,239 and 1,055, respective- 1,693 and 1,408 operational taxonomic units (OTU) ly. This information on the numerous culturable from Dongdo and Seodo, respectively. The statistical and unculturable bacteria is expected to help in the analyses (rarefaction curves as well as Chao1, Shan- screening of new species in Dokdo. non, and Simpson indices) showed that bacterial di- versity was slightly higher in Dongdo than Seodo. Key words: bacterial community; Dokdo Island; From results of a BLASTN search against the Ez- metagenomics Taxon-e database, the validated reads (obtained af- ter sequence preprocessing) were almost all classi- fied at the phylum level. From the phylum level Introduction down to the species level, the number of classified reads considerably decreased due to the absence of Dokdo, located 217 km (37°14′12″ N, 131°52′07″ E) direct- information concerning unculturable or unidenti- ly east of the mainland regions of Korea, is a volcanic island fied bacteria to date. Among the 36 phyla identified, formed by lava eruptions (Kim et al., 2013; Sohn, 1995). three phyla (Proteobacteria, Actinobacteria and Ac- This island has been preserved as a natural monument (since idobacteria) accounted for around 74.64%. The May 9, 2000) due to its unique ecological significance taxonomic composition was similar at the higher (http://jikimi.cha.go.kr/english). Because of frequent turbu- ranks (family and above) between Dongdo and Seo- lent flow, there are typical oceanic climatic features in this do, but a little different at the genus level. There region, with an average temperature of around 12°C and were also various differences in the relative abun- 85% air moisture throughout the year due to continuous rain dance of taxonomic ranks between Dongdo and Se- or snow (Chang et al., 2002). Dokdo consists of two main odo. In particular, the proportion of the genus Ac- islets, Dongdo and Seodo, but the whole island is one mass idobacterium (of the phylum Acidobacteria) was under the ocean. Dongdo is made up of andesitic volcanic about six times higher in Seodo than Dongdo. In ad- rocks, while Seodo is composed of andesite and basalt rocks. Geographically, most of the land is covered under a 30 cm *Corresponding author footnote: Drs. Kim and Seu are co-corresponding authors. Jong-Guk Kim, Microbial-Genomics Laboratory, 427, Biology Building, Dept. of Life Sciences and Biotechnology, Kyungpook National Univer- sity, 702‒701, Daegu, South Korea. Tel: +82‒53‒950‒5379 Fax: +82‒53‒955‒5379 E-mail: [email protected] Young-Bae Seu, Bio-Organic Chemistry Laboratory, 422, Biology Building, Dept. of Life Sciences and Biotechnology, Kyungpook National University, 702‒701, Daegu, South Korea. Tel: +82‒53‒950‒5380 Fax: +82‒53‒955‒5522 E-mail: [email protected] †Both authors contributed equally to this work. None of the authors of this manuscript has any financial or personal relationship with other people or organizations that could inappropriately influence their work. 66 KIM et al. soil layer, and Dongdo and Seodo have a 60° steep slope ing massive sequence data (Handelsman, 2004; Shokralla et (Sohn, 1995). Due to their poor soil layer, rainwater is al., 2012). Among the NGS technologies, Roche 454 GS- immediately drained; consequently, these islets lack water. FLX pyrosequencing is widely used in metagenomics (Gilles Thus, only a few (approximately 50‒60) plant species exist et al., 2011; Li et al., 2013). In this study, metagenomic on this island. In contrast, approximately 4,596 kinds of analysis was performed using the GS-FLX pyrosequencing plant species exist on the mainland regions (Kim et al., 2007; platform. Bacterial communities from soil samples of Park et al., 2010; Shin et al., 2004). Dongdo and Seodo regions were analyzed and comparative The flora and fauna of Dokdo have been consistently analyses (bacterial composition and their relative abundance) studied, while the microflora has only been very recently were performed between Dongdo and Seodo samples. researched. Between 2005 and 2013, 36 species of 4 phyla (Firmicutes, Proteobacteria, Actinobacteria, and Bacteroide- Materials and Methods tes) were studied (National Center for Biotechnology Information (NCBI)). The phylum Firmicutes, a group of Collection of soil samples. The sampling sites were in low-GC-content gram-positive bacteria, produces endospores. Dongdo (37°14′26.8″ N, 131°52′10.4″ E) and Seodo In this phylum, the new species Virgibacillus dokdonensis (37°14′30.6″ N, 131°51′54.6″ E) islets of Dokdo, Uljin-gun, was identified for the first time, in 2005 (Yoon et al., 2005b). Gyeongsangbuk-do, South Korea. The sample soils were The phylum Proteobacteria, a group of gram-negative collected by using cores (depth: 15 cm, diameter: 2 cm) at bacteria, includes various nitrogen fixers and some these sites and were homogenized separately for experi- pathogens. This phylum is divided into the five classes: ments. Alphaproteobacteria, Betaproteobacteria, Deltaproteobacte- DNA extraction and pyrosequencing. For pyrosequenc- ria, Epsilonproteobacteria, and Gammaproteobacteria. The ing analysis, metagenomic DNA was extracted from soil class Alphaproteobacteria includes various symbiotic samples with the FastDNA SPIN Kit for Soil (MP Biomedi- bacteria of plants and animals. The new species Porphyro­ cals, Santa Ana, CA). The resulting DNA was amplified bacter dokdonensis and Sphingomonas dokdonensis of the using barcoded fusion primers targeting the V1/V3 regions class Alphaproteobacteria were identified (Yoon et al., of 16S rRNA genes (Wang and Qian, 2009). The fusion 2006c, e). The new species Variovorax dokdonensis of primers contained 454 specific adapters, a key sequence Betaproteobacteria (which includes nitrogen fixers and (4 bp), a barcode (7‒11 bp unique sequence), a linker pathogens) has also been newly identified (Yoon et al., sequence (2 bp), and universal primers (518R and 27F). The 2006b). For the class Epsilonproteobacteria (the species of forward primer sequence was 5′-CCTATCCCCTGTGT this class are known to inhabit the digestive tract of animals GCCTTGGCAGTC-TCAG-AC-GAGTTTGATCMTG and serve as symbionts or pathogens), the species Arcobacter GCTCAG-3′ and the reverse primer sequence was 5′-CCA marinus has been reported (Kim et al., 2010). The new TCTCATCCCTGCGTGTCTCCGAC-TCAG-X-AC- species Lysobacter dokdonensis, Shewanella dokdonensis, WTTACCGCGGCTGCTGG-3′; the “X”, representing the and Stenotrophomonas dokdonensis of the class Gammapro- barcode sequence, was used to separate samples. The PCR teobacteria (which includes various pathogens) were identi- reaction was carried out using the PTC-200 Peltier thermal fied (Oh et al., 2011; Sung et al., 2012; Yoon et al., 2006d). cycler (MJ Research, Waltham, MA). All PCR products The phylum Actinobacteria, a group of high-GC-content were purified with the QIAquick PCR Purification Kit gram-positive bacteria, produces external spores. In this (Qiagen, Valencia, CA) and the DNA products were quanti- phylum, a total of nine species of six genera has been report- fied using both the QuantiT TM PicoGreen® dsDNA Assay ed, and among the nine species, four (Isoptericola dokdonen­ Kit (Invitrogen, Carlsbad, CA) and the TBS-380 Mini sis, Nocardioides dokdonensis, Nocardioides hankookensis Fluorometer (Turner BioSystems, Sunnyvale, CA). The and Phycicoccus dokdonensis) are new species (Park et al., same amounts of the resulting PCR products from each 2008; Yoon et al., 2006f, 2008a, b). The phylum Bacteroide- sample were pooled and electrophoresed to select the DNA tes is a group of gram-negative and anaerobic bacteria. Three samples longer than 300 bp. The length of DNA fragments new species (Croceitalea dokdonensis, Maribacter was checked again by the Agilent 2100 Bioanalyzer (Agilent dokdonensis, and Polaribacter dokdonensis) of the class Technologies, Santa Clara, CA) (Panaro et al., 2000). The Flavobacteria have also been identified (Lee et al., 2008; pyrosequencing was performed by Chunlab, Inc. (Seoul, Yoon et al., 2005a, 2006a). South Korea) using the 454 GS FLX Titanium Sequencing To investigate these microflora, several methods, such as System (Roche, Branford, CT). All pyrosequencing data the culture-based assay, denaturing gradient gel electropho- were submitted to the EMBL Sequence Read Archive (SRA) resis (DGGE) and next generation sequencing (NGS)-based database under the study accession number PRJEB4517 metagenomics, have been applied (Handelsman, 2004; Hong (http://www.ebi.ac.uk/ena/data/view/PRJEB4517). et al., 2011; Islam and Sar, 2011; Shokralla et al., 2012; Taxonomical identification and statistical data analysis. Streit and Schmitz, 2004; Zhalnina et al., 2012). The culture- All preprocessed reads were identified by performing a based assay has limitation in terms of the study of uncultur- BLASTN search against the EzTaxon-e database (Altschul able microbes from environmental samples, such as soil.
Recommended publications
  • Catalogue of Bacteria Shapes
    We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Drylands Soil Bacterial Community Is Affected by Land Use Change and Different Irrigation Practices in the Mezquital Valley
    www.nature.com/scientificreports OPEN Drylands soil bacterial community is afected by land use change and diferent irrigation practices in the Received: 23 June 2017 Accepted: 3 January 2018 Mezquital Valley, Mexico Published: xx xx xxxx Kathia Lüneberg1, Dominik Schneider2, Christina Siebe1 & Rolf Daniel 2 Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater afects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specifc adaptations to drought and sodium content in specifc land use systems. Predicted functionality profles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles difered among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identifed potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profles provided extensive understanding of the short- term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands. Drylands are defned as regions with arid, semi-arid, and dry sub humid climate with an annual precipitation/ evapotranspiration potential ratio (P/PET)1 ranging from 0.05 to 0.652.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Genomics and Epigenomics of Sporosarcina ureae A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Biology By Andrew Oliver August 2016 The thesis of Andrew Oliver is approved by: _________________________________________ ____________ Sean Murray, Ph.D. Date _________________________________________ ____________ Gilberto Flores, Ph.D. Date _________________________________________ ____________ Kerry Cooper, Ph.D., Chair Date California State University, Northridge ii Acknowledgments First and foremost, a special thanks to my advisor, Dr. Kerry Cooper, for his advice and, above all, his patience. If I can be half the scientist you are someday, I would be thrilled. I would like to also thank everyone in the Cooper lab, especially my colleagues Courtney Sams and Tabitha Bayangnos. It was a privilege to work along side you. More thanks to my committee members, Dr. Gilberto Flores and Dr. Sean Murray. Dr. Flores, you were instrumental in guiding me to ask the right questions regarding bacterial taxonomy. Dr. Murray, your contributions to my graduate studies would make this section run on for pages. I thank you for taking me under your wing from the beginning. Acknowledgement and thanks to the Baresi lab, especially Dr. Larry Baresi and Tania Kurbessoian for their partnership in this research. Also to Bernardine Pregerson for all the work that lays at the foundation of this study. This research would not be what it is without the help of my childhood friend, Matthew Kay. You wrote programs, taught me coding languages, and challenged me to go digging for answers to very difficult questions.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Sporosarcina Aquimarina Sjam16103 Isolated from the Pneumatophores of Avicennia Marina L
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2012, Article ID 532060, 10 pages doi:10.1155/2012/532060 Research Article Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L. S. Rylo Sona Janarthine1 and P. Eganathan2 1 Faculty of Marine Science, Annamalai University, Chidambaram 608 502, India 2 Biotechnology Division, M S Swaminathan Research Foundation, Chennai 600 113, India Correspondence should be addressed to S. Rylo Sona Janarthine, jana [email protected] Received 17 October 2011; Revised 12 January 2012; Accepted 20 April 2012 AcademicEditor:A.J.M.Stams Copyright © 2012 S. R. S. Janarthine and P. Eganathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26◦C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants.
    [Show full text]
  • Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
    Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota
    [Show full text]
  • Reactor Performance and Microbial Analysis
    www.nature.com/scientificreports OPEN Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and Received: 24 March 2017 Accepted: 9 October 2017 microbial analysis Published: xx xx xxxx Qin He, Lei Li, Xiaofei Zhao, Li Qu, Di Wu & Xuya Peng Foaming negatively afects anaerobic digestion of food waste (FW). To identify the causes of foaming, reactor performance and microbial community dynamics were investigated in three mesophilic digesters treating FW. The digesters were operated under diferent modes, and foaming was induced with several methods. Proliferation of specifc bacteria and accumulation of surface active materials may be the main causes of foaming. Volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) accumulated in these reactors before foaming, which may have contributed to foam formation by decreasing the surface tension of sludge and increasing foam stability. The relative abundance of acid- producing bacteria (Petrimonas, Fastidiosipila, etc.) and ammonia producers (Proteiniphilum, Gelria, Aminobacterium, etc.) signifcantly increased after foaming, which explained the rapid accumulation + of VFAs and NH4 after foaming. In addition, the proportions of microbial genera known to contribute to foam formation and stabilization signifcantly increased in foaming samples, including bacteria containing mycolic acid in cell walls (Actinomyces, Corynebacterium, etc.) and those capable of producing biosurfactants (Corynebacterium, Lactobacillus, 060F05-B-SD-P93, etc.). These fndings improve the understanding of foaming mechanisms in FW digesters and provide a theoretical basis for further research on efective suppression and early warning of foaming. Anaerobic digestion is the most feasible method for treating food waste (FW) and recovering renewable energy due to its high organic and moisture contents and low calorifc value compared with traditional treatments such as incineration or landflls1.
    [Show full text]
  • Piscine Mycobacteriosis
    Piscine Importance The genus Mycobacterium contains more than 150 species, including the obligate Mycobacteriosis pathogens that cause tuberculosis in mammals as well as environmental saprophytes that occasionally cause opportunistic infections. At least 20 species are known to Fish Tuberculosis, cause mycobacteriosis in fish. They include Mycobacterium marinum, some of its close relatives (e.g., M. shottsii, M. pseudoshottsii), common environmental Piscine Tuberculosis, organisms such as M. fortuitum, M. chelonae, M. abscessus and M. gordonae, and Swimming Pool Granuloma, less well characterized species such as M. salmoniphilum and M. haemophilum, Fish Tank Granuloma, among others. Piscine mycobacteriosis, which has a range of outcomes from Fish Handler’s Disease, subclinical infection to death, affects a wide variety of freshwater and marine fish. It Fish Handler’s Nodules has often been reported from aquariums, research laboratories and fish farms, but outbreaks also occur in free-living fish. The same organisms sometimes affect other vertebrates including people. Human infections acquired from fish are most often Last Updated: November 2020 characterized by skin lesions of varying severity, which occasionally spread to underlying joints and tendons. Some lesions may be difficult to cure, especially in those who are immunocompromised. Etiology Mycobacteriosis is caused by members of the genus Mycobacterium, which are Gram-positive, acid fast, pleomorphic rods in the family Mycobacteriaceae and order Actinomycetales. This genus is traditionally divided into two groups: the members of the Mycobacterium tuberculosis complex (e.g., M. tuberculosis, M. bovis, M. caprae, M. pinnipedii), which cause tuberculosis in mammals, and the nontuberculous mycobacteria. The organisms in the latter group include environmental saprophytes, which sometimes cause opportunistic infections, and other species such as M.
    [Show full text]
  • Mycobacterium Kansasii, Strain 824 Catalog No. NR-44269 For
    Product Information Sheet for NR-44269 Mycobacterium kansasii, Strain 824 at -60°C or colder immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze-thaw cycles should be avoided. Catalog No. NR-44269 Growth Conditions: For research use only. Not for human use. Media: Middlebrook 7H9 broth with ADC enrichment or equivalent Contributor: Middlebrook 7H10 agar with OADC enrichment or Diane Ordway, Ph.D., Assistant Professor, Department of Lowenstein-Jensen agar or equivalent Microbiology, Immunology and Pathology, Colorado State Incubation: University, Fort Collins, Colorado, USA and National Institute Temperature: 37°C of Allergy and Infectious Diseases (NIAID), National Institutes Atmosphere: Aerobic with 5% CO2 of Health (NIH), Bethesda, Maryland, USA Propagation: 1. Keep vial frozen until ready for use; then thaw. Manufacturer: 2. Transfer the entire thawed aliquot into a single tube of BEI Resources broth. 3. Use several drops of the suspension to inoculate an agar Product Description: slant and/or plate. Bacteria Classification: Mycobacteriaceae, Mycobacterium 4. Incubate the tube, slant and/or plate at 37°C for 1 to 6 Species: Mycobacterium kansasii weeks. Strain: 824 Original Source: Mycobacterium kansasii (M. kansasii), strain Citation: 824 was isolated in 2012 from human sputum at the Acknowledgment for publications should read “The following University of Texas Health Science Center at Tyler, Tyler, reagent was obtained through BEI Resources, NIAID, NIH: 1 Texas, USA. Mycobacterium kansasii, Strain 824, NR-44269.” Comment: M. kansasii, strain 824 is part of the Top Priority Nontuberculous Mycobacteria Whole Genome Sequencing Biosafety Level: 2 Project at the Genomic Sequencing Center for Infectious Appropriate safety procedures should always be used with this Diseases (GSCID) at University of Maryland School of material.
    [Show full text]
  • Genomics of Atlantic Forest Mycobacteriaceae Strains Unravels a Mobilome Diversity with a Novel Integrative Conjugative Element and Plasmids Harbouring T7SS
    RESEARCH ARTICLE Morgado and Paulo Vicente, Microbial Genomics 2020;6 DOI 10.1099/mgen.0.000382 Genomics of Atlantic Forest Mycobacteriaceae strains unravels a mobilome diversity with a novel integrative conjugative element and plasmids harbouring T7SS Sergio Mascarenhas Morgado* and Ana Carolina Paulo Vicente Abstract Mobile genetic elements (MGEs) are agents of bacterial evolution and adaptation. Genome sequencing provides an unbiased approach that has revealed an abundance of MGEs in prokaryotes, mainly plasmids and integrative conjugative elements. Nev- ertheless, many mobilomes, particularly those from environmental bacteria, remain underexplored despite their representing a reservoir of genes that can later emerge in the clinic. Here, we explored the mobilome of the Mycobacteriaceae family, focus- ing on strains from Brazilian Atlantic Forest soil. Novel Mycolicibacterium and Mycobacteroides strains were identified, with the former ones harbouring linear and circular plasmids encoding the specialized type- VII secretion system (T7SS) and mobility- associated genes. In addition, we also identified a T4SS- mediated integrative conjugative element (ICEMyc226) encoding two T7SSs and a number of xenobiotic degrading genes. Our study uncovers the diversity of the Mycobacteriaceae mobilome, pro- viding the evidence of an ICE in this bacterial family. Moreover, the presence of T7SS genes in an ICE, as well as plasmids, highlights the role of these mobile genetic elements in the dispersion of T7SS. Data SUMMARY Conjugative elements, such as conjugative plasmids and Genomic data analysed in this work are available in GenBank integrative conjugative elements (ICEs), mediate their own and listed in Tables S1 and S2 (available in the online version transfer to other organisms, often carrying cargo genes.
    [Show full text]