CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative

Total Page:16

File Type:pdf, Size:1020Kb

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Comparative Genomics and Epigenomics of Sporosarcina ureae A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Biology By Andrew Oliver August 2016 The thesis of Andrew Oliver is approved by: _________________________________________ ____________ Sean Murray, Ph.D. Date _________________________________________ ____________ Gilberto Flores, Ph.D. Date _________________________________________ ____________ Kerry Cooper, Ph.D., Chair Date California State University, Northridge ii Acknowledgments First and foremost, a special thanks to my advisor, Dr. Kerry Cooper, for his advice and, above all, his patience. If I can be half the scientist you are someday, I would be thrilled. I would like to also thank everyone in the Cooper lab, especially my colleagues Courtney Sams and Tabitha Bayangnos. It was a privilege to work along side you. More thanks to my committee members, Dr. Gilberto Flores and Dr. Sean Murray. Dr. Flores, you were instrumental in guiding me to ask the right questions regarding bacterial taxonomy. Dr. Murray, your contributions to my graduate studies would make this section run on for pages. I thank you for taking me under your wing from the beginning. Acknowledgement and thanks to the Baresi lab, especially Dr. Larry Baresi and Tania Kurbessoian for their partnership in this research. Also to Bernardine Pregerson for all the work that lays at the foundation of this study. This research would not be what it is without the help of my childhood friend, Matthew Kay. You wrote programs, taught me coding languages, and challenged me to go digging for answers to very difficult questions. I wish we could always collaborate. To Dr. Melanie Oaks and the sequencing core at the University of California Irvine: thank you for the help in generating all this data and getting this project off the ground. Lastly, to my loving parents, Dan and Evelyn, and brother, Kevin. I am so lucky to call you family. iii Dedication This thesis is dedicated to my parents, Dan and Evelyn. I put years of work into this, but it pales in comparison to the work you put into raising me. I love you both. iv Table of Contents Signature page ii Acknowledgments iii Dedication iv List of Figures/Tables vi Abstract vii Comparative Genomics and Epigenetics of Sporosarcina ureae 1 Introduction 1 Methods 7 Results 14 Discussion 18 Tables and Figures 25 References Cited 39 Appendix 1: Supplemental Tables and Figures 48 v List of Figures/Tables Figure 1: 16S rRNA tree of family Planocococcae 25 Table 1: General genome characteristics of Sporosarcina ureae 26 Figure 2: COG graph of Sporosarcina ureae 27 Figure 3A: 16S rRNA tree of genus Sporosarcina 28 Figure 3B: Core genome tree of genus Sporosarcina ureae 29 Figure 4: ACT plot of six strains of Sporosarcina ureae 30 Figure 5: Identity heatmap of species Sporosarcina ureae 31 Figure 6: Core genome tree of Sporosarcina ureae 32 Figure 7: Circos plot of Sporosarcina ureae S204 33 Figure 8: Epigenome map of Sporosarcina ureae 34 Figure 9: Spore heatmap of Sporosarcina ureae 35 Figure 10: Urease loci alignment 36 Figure 11A: MUSCLE alignment of mreB gene 37 Figure 11B: MUSLCE alignement of rodA gene 38 Figure S1: MATLAB model for core 48 Table S1: Methylation data on the six strains of Sporosarcina ureae 49 Table S2: COG groups of the six strains of Sporosarcina ureae 50 Figure S2: Python script for COG generation 51 vi Abstract Comparative Genomics and Epigenetics of Sporosarcina ureae By Andrew Oliver Master of Science in Biology Sporosarcina ureae is an aerobic, motile, spore-forming Gram-positive cocci that was originally isolated in the early 20th century from soil enrichments with elevated levels of urea. The species is unique in that it is the only known spore-forming cocci, and is currently placed in a genus exclusively composed of bacilli. Current research has been focused on the biotech potential of the unique outer cell surface layer (S-layer), and the ability to efficiently convert urea into ammonia. Specifically, researchers are using organisms that hydrolyze urea in applications such as self-healing concrete, biofuel production, and more efficient means to make fertilizer. The goal of this study is to utilize Pacific Biosciences (PacBio) DNA sequencing technology to generate complete genome sequences and to investigate genetic and epigenetic variations between strains of S. ureae that differ in their spatial and temporal isolation. We have sequenced the first six vii complete genomes and methylomes of S. ureae. Genomes were assembled using PacBio SMRT Analysis (v2.3.0) and Geneious (Biomatters; v9.0.4) software programs, and annotated using the Prokaryote Genome Automatic Annotation Pipeline . The average S. ureae genome is 3.3 Mb in size, and contains an average 3160 CDS, 66 tRNAs and 8 rRNAs, while only one of the strains contains a plasmid (64 kb). Epigenetic analysis, using SMRT Analysis and REBASE (New England Biolabs), of the strains demonstrated evidence of several novel adenine and cytosine methylases present in S. ureae. Examination of the species requirement of 97% sequence identity across the 16S rRNA gene was met by all six strains. However, further analysis using in silico DNA-DNA hybridization (DDH), average nucleotide identity (ANI), and additional core- and pan- genome analysis demonstrated a highly divergent species or possibly some of the strains were a subspecies or new species. Further genetic analysis of the entire genus is needed to determine exactly how S. ureae, a spore-forming cocci, relates to the other spore- forming bacillus species in the genus Sporosarcina. Utilizing genomics, our analysis has begun to clarify the make up of the genus, and also found that there may be additional species of spore-forming cocci other than just S. ureae. viii Comparative Genomics and Epigenomics of Sporosarcina ureae Introduction Sporosarcina ureae is an aerobic, motile, spore-forming Gram-positive coccus that was originally isolated in the early 20th century from soil enrichments with elevated levels of urea. Although discovered more than a century ago, its phylogenetic placement compared to other closely related species remains contentious. Martinus Beijerinck originally isolated a motile coccus that clustered in packets and had the ability to form endospores that he named Planosarcina ureae (Beijerinck 1901). In 1911, Lohnis suggested a name change to Sarcina ureae (Pijper, Crocker et al. 1955), while Orla- Jensen in 1909 and Kluyver and van Niel in 1936 both proposed Sporosarcina ureae (Orla-Jensen 1909) (Kluyver and van Niel 1936). In 1963, Kocur and Martinec concluded that a new genus Sporosarcina should be created in the family Bacillaceae, and that genus contain the species S. ureae (Kocur and Martinec 1963). Further research into various molecular and biochemical properties supported the move into the family Bacillacae (Kluckhohn 1986), however further phylogenetic analysis has moved S. ureae into its current family Planococcaceae. Exactly how Sporosarcina ureae fits into the genus Sporosarcina is still somewhat of an enigma. According to the most recent edition of Bergey’s Manual of Systematic Bacteriology, the genus Sporosarcina is composed of nine species, eight of which are bacilli (Vos, Garrity et al. 2011). Indeed, S. ureae is currently the only member of the genus Sporosarcina that is a coccus and organizes itself in a sarcina grouping. All members of the genus form endospores, are catalase positive, motile and all but one species has the ability to hydrolyze urea, although Bergey’s Manual suggests that the 1 strongest evidence that links these organisms together is the similarity in the16S rRNA gene (Vos, Garrity et al. 2011). The rod morphology is a well-studied phenotype. Despite morphology being a trait that necessitates many proteins working together, rodA and mreB are two of the most well studied proteins implicated in the rod-shape morphology (Henriques, Glaser et al. 1998, Daniel and Errington 2003). rodA in B. subtilis and the rodA-pbp2 operon in E. coli are partially responsible for the rod shape in those organisms and when under expressed or knocked out, the cells become spherical (Henriques, Glaser et al. 1998). Another gene, the actin homologue mreB, is necessary for the rod-shape in Caulobacter crescentus (Figge, Divakaruni et al. 2004). Other proteins such as mreC and mreD are also thought to be involved in cellular morphology; however, their exact functions remain unknown (Errington 2015). Additionally, it has been postulated that mbl, along with another protein, mreBH, has some functional similarity to mreB, though more research is needed to elucidate their exact mechanisms (Abhayawardhane and Stewart 1995, Kawai, Asai et al. 2009). Analysis of genes involved in cell shape in S. ureae or other potential cocci shaped Sporosarcina sp. may yield clues as to why they are phylogeneticaly grouped with rod-shaped bacteria. S. ureae is currently the only known spore-forming cocci, and sporulates in harsh conditions and can remain viable for up to a year (Claus, Fritze et al. 2006). Currently, we have very limited data on the sporulation process of S. ureae, although it appears that the sporulation process in S. ureae closely resembles that of bacilli organisms in the genus Bacillus. However, there is one exception or major difference in the process, which is how the cell differentiates into a spore: Bacillus differentiates asymmetrically while S. 2 ureae differentiates symmetrically (Zhang, Higgins et al. 1997). Further work is needed to truly understand how cells of different morphology differentiate into endospores. Another key characteristic of S. ureae is the ability to produce at least one urease, an enzyme that converts urea to ammonia, which studies have shown has higher activity compared to other purified bacterial ureases (McCoy, Cetin et al. 1992). Despite similarities in urease production and sporulation, different strains that were designated by using Bergey’s Manual as S.
Recommended publications
  • Catalogue of Bacteria Shapes
    We first tried to use the most general shape associated with each genus, which are often consistent across species (spp.) (first choice for shape). If there was documented species variability, either the most common species (second choice for shape) or well known species (third choice for shape) is shown. Corynebacterium: pleomorphic bacilli. Due to their snapping type of division, cells often lie in clusters resembling chinese letters (https://microbewiki.kenyon.edu/index.php/Corynebacterium) Shown is Corynebacterium diphtheriae Figure 1. Stained Corynebacterium cells. The "barred" appearance is due to the presence of polyphosphate inclusions called metachromatic granules. Note also the characteristic "Chinese-letter" arrangement of cells. (http:// textbookofbacteriology.net/diphtheria.html) Lactobacillus: Lactobacilli are rod-shaped, Gram-positive, fermentative, organotrophs. They are usually straight, although they can form spiral or coccobacillary forms under certain conditions. (https://microbewiki.kenyon.edu/index.php/ Lactobacillus) Porphyromonas: A genus of small anaerobic gram-negative nonmotile cocci and usually short rods thatproduce smooth, gray to black pigmented colonies the size of which varies with the species. (http:// medical-dictionary.thefreedictionary.com/Porphyromonas) Shown: Porphyromonas gingivalis Moraxella: Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology (https://en.wikipedia.org/wiki/Moraxella). *This one could be changed to a diplococcus shape because of moraxella catarrhalis, but i think the short rods are fair given the number of other moraxella with them. Jeotgalicoccus: Jeotgalicoccus is a genus of Gram-positive, facultatively anaerobic, and halotolerant to halophilicbacteria.
    [Show full text]
  • I GENOMIC and TRANSCRIPTOMIC ANALYSES of Jeotgalibacillus
    i GENOMIC AND TRANSCRIPTOMIC ANALYSES OF Jeotgalibacillus malaysiensis TO PROVIDE INSIGHTS INTO ITS OSMOTIC ADAPTATION AMIRA SURIATY BINTI YAAKOP A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience) Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia AUGUST 2017 iii iv ACKNOWLEDGEMENT I would like to take this opportunity to dedicate my endless gratitude, sincere appreciation and profound regards to my dearest supervisor, Dr. Goh Kian Mau for his scholastic guidance. He has been instrumental in guiding my research, giving me encouragement, guidance, critics and friendship. Without you this thesis will not be presented as it is today. Furthermore, I would like to convey my appreciation toward my labmates Ms. Chia Sing and Mr. Ummirul, Ms. Suganthi and Ms. Chitra for their guidance and support Not forgetting the helpful lab assistant Mdm. Sue, Mr. Khairul and Mr. Hafizi for all their assistances throughout my research. My sincere appreciation also extends to all my others lab mates in extremophiles laboratory who have provided assistance at various occasions. Last but not least, my special gratitude to my husband, Mohd Hanafi bin Suki who see me up and down throughout this PHD journeys, my lovely parents Noora’ini Mohamad and Yaakop Jaafar, my family members for their support and concern. Not to forget, my friends who had given their helps, motivational and guidance all the time with love. Their mentorship was truly appreciated. v ABSTRACT The genus Jeotgalibacillus under the family of Planococcaceae is one of the understudy genera. In this project, a bacterium strain D5 was isolated from Desaru beach, Johor.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for HM-331 Sporosarcina sp., Strain 2681 Incubation: Temperature: 37°C Atmosphere: Aerobic Catalog No. HM-331 Propagation: 1. Keep vial frozen until ready for use, then thaw. For research use only. Not for human use. 2. Transfer the entire thawed aliquot into a single tube of broth. Contributor: 3. Use several drops of the suspension to inoculate an Kimberlee A. Musser, Ph.D., Chief, Bacterial Diseases, agar slant and/or plate. Division of Infectious Diseases, Wadsworth Center, New York 4. Incubate the tubes and plate at 37°C for 48 hours. State Department of Health, Albany, New York Citation: Manufacturer: NIH Biodefense and Emerging Infections Acknowledgment for publications should read “The following reagent was obtained through the NIH Biodefense and Research Resource Repository Emerging Infections Research Resources Repository, NIAID, NIH as part of the Human Microbiome Project: Sporosarcina Product Description: sp., Strain 2681, HM-331.” Bacteria Classification: Planococcaceae, Sporosarcina Species: Sporosarcina sp. Biosafety Level: 2 Strain: 2681 Original Source: Sporosarcina sp., strain 2681 was isolated Appropriate safety procedures should always be used with 1 this material. Laboratory safety is discussed in the following from human blood. Comments: Sporosarcina sp., strain 2681 is a reference publication: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and genome for The Human Microbiome Project (HMP). HMP Prevention, and National Institutes of Health. Biosafety in is an initiative to identify and characterize human microbial flora. The complete genome of Sporosarcina sp., strain Microbiological and Biomedical Laboratories. 5th ed. Washington, DC: U.S. Government Printing Office, 2007; see 2681 is currently being sequenced at the Human Genome www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm.
    [Show full text]
  • Sporosarcina Aquimarina Sjam16103 Isolated from the Pneumatophores of Avicennia Marina L
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2012, Article ID 532060, 10 pages doi:10.1155/2012/532060 Research Article Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L. S. Rylo Sona Janarthine1 and P. Eganathan2 1 Faculty of Marine Science, Annamalai University, Chidambaram 608 502, India 2 Biotechnology Division, M S Swaminathan Research Foundation, Chennai 600 113, India Correspondence should be addressed to S. Rylo Sona Janarthine, jana [email protected] Received 17 October 2011; Revised 12 January 2012; Accepted 20 April 2012 AcademicEditor:A.J.M.Stams Copyright © 2012 S. R. S. Janarthine and P. Eganathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26◦C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants.
    [Show full text]
  • Thèses Traditionnelles
    UNIVERSITÉ D’AIX-MARSEILLE FACULTÉ DE MÉDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ THÈSE Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 23 Novembre 2017 Par El Hadji SECK Étude de la diversité des procaryotes halophiles du tube digestif par approche de culture Pour obtenir le grade de DOCTORAT d’AIX-MARSEILLE UNIVERSITÉ Spécialité : Pathologie Humaine Membres du Jury de la Thèse : Mr le Professeur Jean-Christophe Lagier Président du jury Mr le Professeur Antoine Andremont Rapporteur Mr le Professeur Raymond Ruimy Rapporteur Mr le Professeur Didier Raoult Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR 7278 Directeur : Pr. Didier Raoult 1 Avant-propos : Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • AB Supplemental Figure 1. MNV Treatment Alters The
    A Phylum Class Order Taxonomy Other Taxonomy Unclassified Bacteria Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Proteobacteria γ-proteobacteria Enterobacteriales Enterobacteriaceae Unclassified Bacteroidetes Bacteroidetes Bacteroidia Bacteroidales Unclassified Bacteroidales Unclassified Firmicutes Unclassified Clostridiales Clostridiales Incertea Sedis XIV Clostridia Clostridiales Clostridiaceae Lachnospiraceae Peptostreptococcaceae Firmicutes Ruminococcaceae Planococcaceae Bacillales Staphylococcaceae Bacillaceae Bacilli Enterococcaceae Lactobacillales Streptococcaceae Lactobacillaceae Erysipelotrichi Erysipelotrichales Erysipelotrichaceae B Untreated MNV MNV Recovery 100% 80% Ileum 60% Contents 40% 20% 0% 100% 80% Ileum Wall 60% 40% 20% 0% 100% 80% 60% Cecum 40% 20% 0% 100% 80% 60% Feces 40% 20% 0% Supplemental Figure 1. MNV treatment alters the composition of the microbiota. (A) Color code for the most predominant bacterial populations found in the murine intestine. (B) Phylogenetic classification of 16S rDNA frequencies in the ileum, cecum or feces collected from untreated mice, mice treated with metronidazole+neomycin+vancomycin (MNV), or mice allowed to recover for two weeks from the MNV treatment. Each bar represents the microbiota composition of an individual mouse. A Phylum Class Order Taxonomy Other Taxonomy Unclassified Bacteria Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Proteobacteria γ-proteobacteria Enterobacteriales Enterobacteriaceae Unclassified Bacteroidetes Bacteroidetes Bacteroidia
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Florula of Larval and Imaginal Phases of the Volfartova Fly (Wohlfarthia magnifica) In the Conditions of the Steppe Zone of The Pavlodar Region. A A Bitkeyeva1* and L T Bulekbayeva2. 1Senior teacher, Master of Ecology, Pavlodar State University named after S. Toraygyrov, The Republic of Kazakhstan. 2Associate professor, Candidate of Biological Sciences, Pavlodar State Pedagogical Institute, Republic of Kazakhstan. ABSTRACT Groups of bacteria were found during research in a steppe zone of the Pavlodar region, belonging to 3 families: Baccilaceae, Micrococcaceae, Enterobacteriacea. 13 species of pathogenic and opportunistic bacteria are obtained and identified, which cause diseases. Reception of agents from flies of Wohlfartia magnifica family in region farms forces to pay attention to quite real possibility and contagion of various infections. It creates the menacing epidemiological and epizootiology situation on the adjacent to farms of populated places, as flies with excrements can infect forages and migrate on considerable distances. Keywords: bacteria, diseases, infections, larvaes, microorganisms, flies, sheep, pathogenic microorganisms, carriers. *Corresponding author July– August 2015 RJPBCS 6(4) Page No. 2069 ISSN: 0975-8585 INTRODUCTION Flies are known as carriers of causative agents of dangerous infectious and invasive diseases. Therefore, in the populated places and on the pastures, studying of microbal and helminthosis impurity of flies represents scientific and practical interest. Epidemiological value of flies was opened by E.N. Pavlovskiy and V.P. Derbeneva-Ukhova, they participate in distribution about 70 pathogenic microflora, and including agents of a tularemia, anthrax, diphtheria, cholera, plague, a crab hand, etc. [2; 8; 12].
    [Show full text]
  • Antibus Revised Thesis 11-16 For
    Molecular and Cultivation-based Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Doug Antibus December, 2009 Thesis written by Doug Antibus B.S., Kent State University, 2007 M.S., Kent State University, 2009 Approved by Dr. Christopher B. Blackwood Advisor Dr. James L. Blank Chair, Department of Biological Sciences Dr. Timothy Moerland Dean, College of Arts and Sciences iii TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………..iv LIST OF FIGURES ……………………………………………………………………...vi ACKNOWLEDGEMENTS…………………………………………………………......viii CHAPTER I: General Introduction……………………………………………………….1 CHAPTER II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity Introduction……………………………………………………………....22 Results and Discussion……………………………………………..……27 Methods…………………………………………………………………..51 Literature Cited…………………………………………………………..59 CHAPTER III: Recovery of Viable Bacteria from Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica Introduction………………………………………………..……………..78 Methods…………………………………………………………………..80 Results……………………………………………………………...…….88 Discussion…………………………………………………………...….106 Literature Cited………………………………………………………....109 CHAPTER IV: General Discussion…………………………………………………….120 iii LIST OF TABLES Chapter II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Curriculum Vitae SIR RICHARD JOHN ROBERTS ADDRESS PERSONAL
    Curriculum Vitae SIR RICHARD JOHN ROBERTS ADDRESS New England Biolabs 240 County Road, Ipswich, MA 02138 USA Email: [email protected] Telephone: (978) 380-7405 / Fax: (978) 380-7406 PERSONAL Born on September 6, 1943, Derby, England EDUCATION 1962-1965 University of Sheffield, Sheffield, England B.Sc. in Chemistry 1966-1968 University of Sheffield, Sheffield, England Ph.D. in Organic Chemistry POSITIONS 2005- Chief Scientific Officer, New England Biolabs 1992-2005 Research Director, New England Biolabs 1986-92 Assistant Director for Research, Cold Spring Harbor Laboratory 1972-86 Senior Staff Investigator, Cold Spring Harbor Laboratory 1971-1972 Research Associate in Biochemistry, Harvard University 1969-1970 Research Fellow, Harvard University OUTSIDE ACTIVITIES 1974-1992 Consultant and Chairman of Scientific Advisory Board New England Biolabs 1977-1985 Scientific Advisory Board, Genex Corp. 1977-1987 Editorial Board: Nucleic Acids Research 1979-1984 Editorial Board: Journal of Biological Chemistry 1982-1989 Member: National Advisory Committee of GENBANK 1984-1986 Member: National Advisory Committee of BIONET 1985-1988 Panel member: NIH Study Section in Biochemistry. 1985-2002 Editorial Board: Bioinformatics (formerly CABIOS) 1987-1990 Chairman: National Advisory Committee of BIONET 1987-2009 Senior Executive Editor: Nucleic Acids Research 1990-1992 Panel member: NCI Cancer Centers Support Grant Review Committee 1993-1995 Panel member: NLM Study Section/Comp. Biol. 1994-2000 Scientific Advisory Board, Molecular Tool 1994- Patron of the Oxford International Biomedical Center 1996-1998 Visiting Professor, University of Bath, UK. 1996-2000 Chairman, NCI Board of Scientific Counselors 1996-1999 Scientific Advisory Board, Oxford Molecular Group 1997-2001 Editorial Board: Current Opinion Chem. Biol.
    [Show full text]
  • 16S Rdna Sequence Analysis of Culturable Marine Biofilm Forming Bacteria from a Ship's Hull D
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/280736395 paper inbakandan 08927014%2E2010%2E530347 DATASET · AUGUST 2015 DOWNLOADS VIEWS 11 14 7 AUTHORS, INCLUDING: Ramasamy Venkatesan G. Latha National Institute of Ocean Technology Natioanl institute of ocean technology 103 PUBLICATIONS 654 CITATIONS 49 PUBLICATIONS 88 CITATIONS SEE PROFILE SEE PROFILE Simi Mathew Rokkam Rao National Institute of Ocean Technology Indian Institute of Tropical Meteorology 8 PUBLICATIONS 104 CITATIONS 40 PUBLICATIONS 821 CITATIONS SEE PROFILE SEE PROFILE Available from: Ramasamy Venkatesan Retrieved on: 15 September 2015 This article was downloaded by: [Nat Institute of Ocean Technology] On: 20 July 2015, At: 03:15 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG Biofouling: The Journal of Bioadhesion and Biofilm Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gbif20 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull D. Inbakandan a b , P. Sriyutha Murthy c , R. Venkatesan d & S. Ajmal Khan b a Centre for Ocean Research , Sathyabama University , Chennai , 600 119 , India b Centre of Advanced Study in Marine Biology , Annamalai University , Port Nova , 608502 , India c Biofouling and Biofilm Processes Section , WSCL, BARC Facilities, IGCAR , Kalpakkam , 603 102 , India d Ocean
    [Show full text]
  • The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus Aureus in Germany—A Culturomic Approach
    microorganisms Article The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Germany—A Culturomic Approach Andreas Schlattmann 1, Knut von Lützau 1, Ursula Kaspar 1,2 and Karsten Becker 1,3,* 1 Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; [email protected] (A.S.); [email protected] (K.v.L.); [email protected] (U.K.) 2 Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektiologie und Hygiene, 44801 Bochum, Germany 3 Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-86-5560 Received: 17 March 2020; Accepted: 2 April 2020; Published: 4 April 2020 Abstract: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) remains a serious public health threat. Porcine nasal cavities are predominant habitats of LA-MRSA. Hence, components of their microbiota might be of interest as putative antagonistically acting competitors. Here, an extensive culturomics approach has been applied including 27 healthy pigs from seven different farms; five were treated with antibiotics prior to sampling. Overall, 314 different species with standing in nomenclature and 51 isolates representing novel bacterial taxa were detected. Staphylococcus aureus was isolated from pigs on all seven farms sampled, comprising ten different spa types with t899 (n = 15, 29.4%) and t337 (n = 10, 19.6%) being most frequently isolated. Twenty-six MRSA (mostly t899) were detected on five out of the seven farms. Positive correlations between MRSA colonization and age and colonization with Streptococcus hyovaginalis, and a negative correlation between colonization with MRSA and Citrobacter spp.
    [Show full text]