2012 Integrated Resource Plan Meeting Roseville’S Future Electricity Needs

Total Page:16

File Type:pdf, Size:1020Kb

2012 Integrated Resource Plan Meeting Roseville’S Future Electricity Needs 2012 Integrated Resource Plan Meeting Roseville’s Future Electricity Needs 1 311 Verson Street | Roseville, California 95678 | www.roseville.ca.us Table of Contents 1 INTRODUCTION .....................................................................................................................................................4 2 BACKGROUND ........................................................................................................................................................5 2.1 Goals and Objectives ................................................................................................................................5 2.2 Methodology ...............................................................................................................................................6 2.3 Major Changes from 2006/2008 IRP ....................................................................................................7 3 Elements of IRP ......................................................................................................................................................9 3.1 Customer Loads and Demand ...............................................................................................................9 Demand and Energy .................................................................................................................................9 Demand Side Management ...................................................................................................................9 3.2 Generation Resources...............................................................................................................................9 General Characteristics ............................................................................................................................9 Natural Gas Plants ...................................................................................................................................12 Coal Power Plants ....................................................................................................................................12 Nuclear Plants ...........................................................................................................................................13 Hydroelectric ............................................................................................................................................14 Geothermal ...............................................................................................................................................14 Biomass .......................................................................................................................................................14 Wind Turbines ...........................................................................................................................................15 Solar .............................................................................................................................................................16 Distributed Generation .........................................................................................................................18 Contracts ....................................................................................................................................................18 Markets .......................................................................................................................................................19 3.3 Transmission and Distribution System ............................................................................................19 3.4 Regulatory .................................................................................................................................................19 Renewable Energy ..................................................................................................................................19 Renewable Portfolio Standard – SB 1078 .......................................................................................20 Energy Efficiency and Demand Reduction Requirements .......................................................22 Greenhouse Gas Emissions ..................................................................................................................23 Resource Adequacy ................................................................................................................................26 Other Potential Requirements and Restrictions ..........................................................................27 4 Roseville System .................................................................................................................................................28 4.1 Load Forecast ............................................................................................................................................28 Load Forecast Methodology ...............................................................................................................28 Forecast Assumptions ...........................................................................................................................29 Load Forecast Results ............................................................................................................................30 4.2 Demand Side Management ................................................................................................................31 4.3 Existing Supply Resources ...................................................................................................................33 Western Area Power Administration ................................................................................................34 NCPA Projects ...........................................................................................................................................34 City Owned Generation ........................................................................................................................35 Contracts ....................................................................................................................................................36 Markets .......................................................................................................................................................37 4.4 Roseville Electric Risk Management Program ...............................................................................37 Energy Risk Management ....................................................................................................................37 4.5 Transmission & Distribution System .................................................................................................39 California Balancing Authorities ........................................................................................................39 Transmission .............................................................................................................................................41 Distribution System ................................................................................................................................44 2 5 ROSEVILLE RESOURCE NEEDS .......................................................................................................................46 5.1 Renewable Portfolio Standard Needs ..............................................................................................46 6 RESOURCE ANALYSIS ........................................................................................................................................48 6.1 Resource Analysis ....................................................................................................................................48 6.2 Request for Offers for Renewable Energy ......................................................................................49 Resource Feasibility ................................................................................................................................50 Renewable Generation Impact ..........................................................................................................51 6.3 Portfolio Design and Comparison .....................................................................................................54 Assumptions .............................................................................................................................................54 Potential Portfolios .................................................................................................................................54 Portfolio Comparison .............................................................................................................................54 6.4 Detailed Portfolio Analysis ...................................................................................................................60 Portfolio Characteristics ........................................................................................................................61 Power Supply Costs ................................................................................................................................62 Rate Impact ...............................................................................................................................................62 Renewable
Recommended publications
  • Analyzing the Energy Industry in United States
    +44 20 8123 2220 [email protected] Analyzing the Energy Industry in United States https://marketpublishers.com/r/AC4983D1366EN.html Date: June 2012 Pages: 700 Price: US$ 450.00 (Single User License) ID: AC4983D1366EN Abstracts The global energy industry has explored many options to meet the growing energy needs of industrialized economies wherein production demands are to be met with supply of power from varied energy resources worldwide. There has been a clearer realization of the finite nature of oil resources and the ever higher pushing demand for energy. The world has yet to stabilize on the complex geopolitical undercurrents which influence the oil and gas production as well as supply strategies globally. Aruvian's R'search’s report – Analyzing the Energy Industry in United States - analyzes the scope of American energy production from varied traditional sources as well as the developing renewable energy sources. In view of understanding energy transactions, the report also studies the revenue returns for investors in various energy channels which manifest themselves in American energy demand and supply dynamics. In depth view has been provided in this report of US oil, electricity, natural gas, nuclear power, coal, wind, and hydroelectric sectors. The various geopolitical interests and intentions governing the exploitation, production, trade and supply of these resources for energy production has also been analyzed by this report in a non-partisan manner. The report starts with a descriptive base analysis of the characteristics of the global energy industry in terms of economic quantity of demand. The drivers of demand and the traditional resources which are used to fulfill this demand are explained along with the emerging mandate of nuclear energy.
    [Show full text]
  • Microgrid Market Analysis: Alaskan Expertise, Global Demand
    Microgrid Market Analysis: Alaskan Expertise, Global Demand A study for the Alaska Center for Microgrid Technology Commercialization Prepared by the University of Alaska Center for Economic Development 2 3 Contents Introduction .................................................................................................................................................. 4 Market Trends ............................................................................................................................................... 5 Major Microgrid Segments ....................................................................................................................... 5 Global demand of microgrids ................................................................................................................... 5 Where does Alaska fit into the picture? Which segments are relevant? ................................................. 7 Remote/Wind-Diesel Microgrids .......................................................................................................... 8 Military Microgrid ................................................................................................................................. 8 Microgrid Resources with Examples in Alaska .............................................................................................. 8 Wind .......................................................................................................................................................... 8 Kotzebue ............................................................................................................................................
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Genesis Solar Energy Project PA/FEIS 4.1-1 August 2010 4
    CHAPTER 4 Environmental Consequences 4.1 Introduction This chapter assesses environmental impacts that would occur due to the implementation of proposed action or the alternatives described in Chapter 2. The baseline affected environment, or existing condition, is described in Chapter 3. 4.1.1 Analytical Assumptions The following impacts analysis was conducted with the following assumptions: 1. The laws, regulations, and policies applicable to BLM authorizing ROW grants for renewable energy development facilities would be applied consistently for all action alternatives. 2. The proposed facility would be constructed, operated, maintained and decommissioned as described in each action alternative. 3. Short-term impacts are those expected to occur during the construction phase and the first five years of the operation and maintenance phase. Long-term impacts are those that would occur after the first five years of operation. 4.1.2 Types of Effects The potential impacts from those actions that would have direct, indirect, and cumulative effects were considered for each resource. Effects and impacts as used in this document are synonymous and could be beneficial or detrimental. Direct effects are caused by the action and occur at the same time and place as the action; indirect effects are caused by the action and occur later in time or further in distance, but are still reasonably foreseeable. 40 CFR 1508.8. Cumulative impacts are those effects resulting from the incremental impacts of an action when combined with other past, present, and reasonably foreseeable future actions (regardless of which agency or person undertakes such actions). 40 CFR 1508.7. Cumulative impacts could result from individually insignificant but collectively significant actions taking place over a period of time.
    [Show full text]
  • Overview of Concentrated Solar Energy Technologies
    Online Continuing Education for Professional Engineers Since 2009 Overview of Concentrated Solar Energy Technologies PDH Credits: 6 PDH Course No.: CST101 Publication Source: Original Courseware by Donald W. Parnell, PE Release Date: 2018 DISCLAIMER: All course materials available on this website are not to be construed as a representation or warranty on the part of Online-PDH, or other persons and/or organizations named herein. All course literature is for reference purposes only, and should not be used as a substitute for competent, professional engineering council. Use or application of any information herein, should be done so at the discretion of a licensed professional engineer in that given field of expertise. Any person(s) making use of this information, herein, does so at their own risk and assumes any and all liabilities arising therefrom. Copyright © 2009 Online-PDH - All Rights Reserved 1265 San Juan Dr. - Merritt Island, FL 32952 Phone: 321-501-5601 Primer on Concentrated Solar Energy Credits: 6 PDH Course Description This course discusses several of the more proven concentrating solar power technologies presently on the market. Also discussed will be the basic units commonly found in most types of CSP facilities: solar reflectors (mirrors), solar receivers, and solar tracking devices, along with their ancillary components. Discussed will be the primary application of using solar thermal heat for generating steam for turbine electrical power production. Other applications for concentrated solar are high thermal heat processes
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • State of California
    DOCKET 08-AFC-5 DATE MAR 23 2010 RECD. MAR 24 2010 March 23, 2010 Mr. Christopher Meyer Project Manager Attn: Docket No. 08-AFC-5 California Energy Commission 1516 Ninth Street Sacramento, CA 95814-5512 Subject: Imperial Valley Solar (formerly Solar Two) (08-AFC-5) Applicant’s Prehearing Conference Statement URS Project No. 27657103.00209 Dear Mr. Meyer: On behalf of Imperial Valley Solar (formerly SES Solar Two), LLC, URS Corporation Americas (URS) hereby submits the Applicant’s Prehearing Conference Statement. I certify under penalty of perjury that the foregoing is true, correct, and complete to the best of my knowledge. I also certify that I am authorized to submit on behalf of Imperial Valley Solar, LLC. Sincerely, Angela Leiba Project Manager AL: ml URS Corporation 1615 Murray Canyon Road, Suite 1000 San Diego, CA 92108 Tel: 619.294.9400 Fax: 619.293.7920 STATE OF CALIFORNIA Energy Resources Conservation and Development Commission Application for Certification for the ) Imperial Valley Solar Project (formerly ) Known as SES Solar Two Project) ) Docket No. 08-AFC-5 Imperial Valley Solar, LLC ) ____________________________________) Applicant’s Prehearing Conference Statement March 15, 2009 Allan J. Thompson 21 “C” Orinda Way, #314 Orinda, CA 94563 (925) 258-9962 [email protected] STATE OF CALIFORNIA Energy Resources Conservation and Development Commission Application for Certification for the ) Imperial Valley Solar Project (formerly ) Known as SES Solar Two Project ) Docket No. 08-AFC-5 Imperial Valley Solar, LLC ) ____________________________________) On February 12, 2009 CEC Staff and BLM issued a “Staff Assessment and Draft Environmental Impact Statement and Draft California Desert Conservation Area Plan Amendment”.
    [Show full text]
  • Jacobson and Delucchi (2009) Electricity Transport Heat/Cool 100% WWS All New Energy: 2030
    Energy Policy 39 (2011) 1154–1169 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials Mark Z. Jacobson a,n, Mark A. Delucchi b,1 a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA b Institute of Transportation Studies, University of California at Davis, Davis, CA 95616, USA article info abstract Article history: Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing Received 3 September 2010 them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing Accepted 22 November 2010 worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, Available online 30 December 2010 water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future Keywords: energy demand, availability of WWS resources, numbers of WWS devices, and area and material Wind power requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that Solar power 3,800,000 5 MW wind turbines, 49,000 300 MW concentrated solar plants, 40,000 300 MW solar Water power PV power plants, 1.7 billion 3 kW rooftop PV systems, 5350 100 MW geothermal power plants, 270 new 1300 MW hydroelectric power plants, 720,000 0.75 MW wave devices, and 490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes.
    [Show full text]
  • Renewable Energy in Alaska WH Pacific, Inc
    Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Subcontract Report NREL/SR-7A40-47176 March 2013 Contract No. DE-AC36-08GO28308 Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch Prepared under Subcontract No. AEU-9-99278-01 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-7A40-47176 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication was reproduced from the best available copy submitted by the subcontractor and received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • TB Pickens Misadventure with Wind
    T. Boone’s Windy Misadventure And the Global Backlash Against Wind Energy By Robert Bryce Posted on Jul. 28, 2011 Three years ago this month, T. Boone Pickens launched a multi-million dollar crusade to bring more wind energy to the US. “Building new wind generation facilities,” along with energy efficiency and more consumption of domestic natural gas, the Dallas billionaire claimed, would allow the US to “replace more than one-third of our foreign oil imports in 10 years.” Those were halcyon times for the wind industry. These days, Pickens never talks about wind. He’s focused instead on getting a fat chunk of federal subsidies so he can sell more natural gas to long-haul truckers through his company, Clean Energy Fuels. (Pickens and his wife, Madeleine, own about half of the stock of Clean Energy, a stake worth about $550 million.) While the billionaire works the halls of Congress seeking a subsidy of his very own, he's also trying to find a buyer for the $2 billion worth of wind turbines he contracted for back in 2008. The last news report that I saw indicated that he was trying to foist the turbines off onto the Canadians. Being dumped by Pickens is only one of a panoply of problems facing the global wind industry. Among the issues: an abundance of relatively cheap natural gas, a growing backlash against industrial wind projects due to concerns about visual blight and noise, increasing concerns about the murderous effect that wind turbines have on bats and birds, the extremely high costs of offshore wind energy, and a new study which finds that wind energy’s ability to cut carbon dioxide emissions have been overstated.
    [Show full text]
  • Solar Is Driving a Global Shift in Electricity Markets
    SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion .....................................................................................................................
    [Show full text]
  • Wind Energy Is Not the Answer
    WIND ENERGY IS NOT THE ANSWER by Bradley S. Tupii Abstract. Wind energy is not the answer to climate change concerns and cannot do the heavy lifting required by the modern American economy. It would take hundreds of thousands of wind turbines to make a substantial contribution to America’s energy needs. Building so many turbines inevitably causes conflicts with human and animal habitats. Wind turbine noise is a serious problem for those who live in the vicinity of so-called wind farms. * * * Introduction. Wind energy is not a modern phenomenon. Man harnessed the wind with sailboats and windmills hundreds of years ago. Charles Brush developed a wind-powered electric generator in 1888.2 Small, wind-powered generators such as the Jacobs Wind-Electric Machine became popular in the Midwest in the early 20th Century.3 These windmills became obsolete when Depression-era programs brought more reliable electric power to rural areas.4 Wind energy began a slow resurgence during the Carter administration when the Public Utility Regulatory Policies Act of 19785 fostered state tax incentives for wind power development and allowed non-utility energy producers to sell electricity to utilities.6 Currently, wind power is hailed by some as a key weapon in the battle against global warming and as an important contributor to American energy independence. This paper will argue that wind energy is neither. Wind power cannot generate enough reliable electricity to replace conventional energy sources, including those that generate greenhouse gases. Assuming for the sake of argument that carbon dioxide is contributing to global climate change, wind power will not materially reduce CO2 emissions.
    [Show full text]