Jacobson and Delucchi (2009) Electricity Transport Heat/Cool 100% WWS All New Energy: 2030

Total Page:16

File Type:pdf, Size:1020Kb

Jacobson and Delucchi (2009) Electricity Transport Heat/Cool 100% WWS All New Energy: 2030 Energy Policy 39 (2011) 1154–1169 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials Mark Z. Jacobson a,n, Mark A. Delucchi b,1 a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA b Institute of Transportation Studies, University of California at Davis, Davis, CA 95616, USA article info abstract Article history: Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing Received 3 September 2010 them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing Accepted 22 November 2010 worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, Available online 30 December 2010 water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future Keywords: energy demand, availability of WWS resources, numbers of WWS devices, and area and material Wind power requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that Solar power 3,800,000 5 MW wind turbines, 49,000 300 MW concentrated solar plants, 40,000 300 MW solar Water power PV power plants, 1.7 billion 3 kW rooftop PV systems, 5350 100 MW geothermal power plants, 270 new 1300 MW hydroelectric power plants, 720,000 0.75 MW wave devices, and 490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only 0.41% and 0.59% more of the world’s land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today. & 2010 Elsevier Ltd. All rights reserved. 1. Introduction improving energy efficiency. Pacala and Socolow (2004) suggested a similar portfolio, but expanded it to include reductions in deforestation A solution to the problems of climate change, air pollution, water and conservation tillage and greater use of hydrogen in vehicles. pollution, and energy insecurity requires a large-scale conversion to More recently, Fthenakis et al. (2009) analyzed the technical, clean, perpetual, and reliable energy at low cost together with an geographical, and economic feasibility for solar energy to supply increase in energy efficiency. Over the past decade, a number of studies the energy needs of the U.S. and concluded (p. 397) that ‘‘it is clearly have proposed large-scale renewable energy plans. Jacobson and feasible to replace the present fossil fuel energy infrastructure in Masters (2001) suggested that the U.S. could satisfy its Kyoto Protocol the U.S. with solar power and other renewables, and reduce CO2 requirement for reducing carbon dioxide emissions by replacing 60% of emissions to a level commensurate with the most aggressive its coal generation with 214,000–236,000 wind turbines rated at climate-change goals’’. Jacobson (2009) evaluated several long- 1.5 MW (million watts). Also in 2001, Czisch (2006) suggested that a term energy systems according to environmental and other totally renewable electricity supply system, with intercontinental criteria, and found WWS systems to be superior to nuclear, transmission lines linking dispersed wind sites with hydropower fossil-fuel, and biofuel systems (see further discussion in Section 2). backup, could supply Europe, North Africa, and East Asia at total costs He proposed to address the hourly and seasonal variability of per kWh comparable with the costs of the current system. Hoffert et al. WWS power by interconnecting geographically disperse renew- (2002) suggested a portfolio of solutions for stabilizing atmospheric able energy sources to smooth out loads, using hydroelectric power CO2, including increasing the use of renewable energy and nuclear to fill in gaps in supply. He also proposed using battery-electric energy, decarbonizing fossil fuels and sequestering carbon, and vehicles (BEVs) together with utility controls of electricity dispatch to them through smart meters, and storing electricity in hydrogen or solar-thermal storage media. Cleetus et al. (2009) subsequently n Corresponding author. Tel.: +1 650 723 6836. presented a ‘‘blueprint’’ for a clean-energy economy to reduce E-mail addresses: [email protected] (M.Z. Jacobson), [email protected] (M.A. Delucchi). CO2-equivalent GHG emissions in the U.S. by 56% compared 1 Tel.: +1 916 989 5566. with the 2005 levels. That study featured an economy-wide CO2 0301-4215/$ - see front matter & 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.enpol.2010.11.040 M.Z. Jacobson, M.A. Delucchi / Energy Policy 39 (2011) 1154–1169 1155 Table 1 Recent studies of rapid, large-scale development of renewable energy. Study Energy mix by sector Time frame Geographic scope This study and Jacobson and Delucchi (2009) Electricity transport heat/cool 100% WWS All new energy: 2030. World All energy: 2050 Alliance for Climate Protection (2009) Electricity transport 100% WWS+Bm 2020 U.S. Parsons-Brinckerhoff (2009) Electricity transport heat/cool 80% WWS+NCBmBf 2050 UK Price-Waterhouse-Coopers (2010) Electricity 100% WWS+Bm 2050 Europe & North Africa Beyond Zero Emissions (2010) Electricity transport heat/cool 100% WWS+Bm 2020 Australia European Climate Foundation (ECF) (2010) Electricity transport heat/cool 80% WWS+NCBm 2050 Europe European Renewable Energy Council (EREC) (April (2010) Electricity transport heat/cool 100% WWS+BmBf 2050 Europe WWS¼wind, water, solar power; FF¼fossil fuels; Bm¼biomass; Bf¼liquid biofuels; N¼nuclear; C¼coal-CCS. Cleetus et al. (2009) is not included only because its focus is mainly on efficiency and demand management, with only modest increases in renewable energy. cap-and-trade program and policies to increase energy efficiency matches demand, the economics of WWS generation and transmis- and the use of renewable energy in industry, buildings, electricity, sion, the economics of the use of WWS power in transportation, and and transportation. Sovacool and Watts (2009) suggested that a policy issues. Although we recognize that a comprehensive plan to completely renewable electricity sector for New Zealand and the address global environmental problems must also address other United States is feasible. sectors, including agriculture (Horrigan et al., 2002; Wall and Smit, In Jacobson and Delucchi (2009), we outlined a large-scale plan 2005) and forestry (Niles et al., 2002), we do not address those to power the world for all purposes with WWS (no biofuels, nuclear issues here. power, or coal with carbon capture). The study found that it was technically feasible to power the world with WWS by 2030 but such a conversion would almost certainly take longer due to the 2. Clean, low-risk, sustainable energy systems difficulty in implementing all necessary policies by then. However, we suggested, and this study reinforces, the concept that all new 2.1. Evaluation of long-term energy systems: why we choose WWS energy could be supplied by WWS by 2030 and all existing energy power could be converted to WWS by 2050. The analysis presented here is an extension of that work. Because climate change (particularly loss of the Arctic sea ice Table 1 compares and summarizes several other recent large- cap), air pollution, and energy insecurity are the current and scale plans. While all plans are ambitious, forward thinking, and growing problems, but it takes several decades for new technol- detailed, they differ from our plan, in that they are for limited world ogies to become fully adopted, we consider only options that have regions and none relies completely on WWS. However, some come been demonstrated in at least pilot projects and that can be scaled close in the electric power sector, relying on only small amounts of up as part of a global energy system without further major non-WWS energy in the form of biomass for electric power technology development. We avoid options that require substan- production. Those studies, however, address only electricity and/ tial further technological development and that will not be ready to or transport, but not heating/cooling. begin the scale-up process for several decades. Note that we select More well known to the public than the scientific studies, technologies based on the state of development of the technology perhaps, are the ‘‘Repower America’’ plan of former Vice-President only rather than whether industrial capacity is currently ramped and Nobel-Peace Prize winner Al Gore, and a similar proposal by up to produce the technologies on a massive scale or whether businessman T. Boone Pickens. Mr. Gore’s proposal calls for society is motivated to change to the technologies. In this paper and improvements in energy efficiency, expansion of renewable in Part II, we do consider the feasibility of implementing the chosen energy generation, modernization of the transmission grid, and the technologies based on estimated costs, necessary policies, and conversion of motor vehicles to electric power. The ultimate (and available materials as well as other factors. ambitious) goal is to provide America ‘‘with 100% clean electricity In order to ensure that our energy system remains clean even within 10 years,’’ which Mr. Gore proposes to achieve by increasing with large increases in population and economic activity in the long the use of wind and concentrated solar and improving energy run, we consider only those technologies that have essentially zero efficiency (Alliance for Climate Protection, 2009). In Gore’s plan, emissions of greenhouse gases and air pollutants per unit of output solar PV, geothermal, and biomass electricity would grow only over the whole ‘‘lifecycle’’ of the system.
Recommended publications
  • 1St and 2Nd Reports of the Advisory C
    Conference – Michigan’s Future – Energy, Economy, Environment November 1-3, 2013, Thompsonville, Michigan, http://www.futuremichigan.org/ Friday, November 1 Foss, Nicole & Boomert, Laurence - A Century of Challenges International experts Foss (Canada) and Boomert (NZ) describe unprecedented challenges the 21st century brings and appropriate responses. Climate change, natural resource depletion and fragile economic systems present a very different future. We can either be reactive or proactive. The new system conditions mandate personal and societal responses beyond those of the 20th century. Foss is Senior Editor of The Automatic Earth, and international speaker on global finance, energy and environmental issues. Boomert has a long history in contingency planning, green business development and community solutions. In the early 1990s, he founded the 500 member Environmental Business Network. He currently runs the Bank of Real Solutions. Nicole discussed cycles of boom and bust through time as purchasing power stimulates demand, activity and credit (inflation), limits are reached and contraction or deflation then begins as promises are broken, liquidity crunches and economics depression begins. Inflation results as a result of currency inflation cuts and more money is printed or credit expansion, excess claims. In our future, liquidity will be more important as values of assets and consumer prices fall and value of cash rises. Liquidity represents uncommitted choices, preserves freedom of action. During a contraction phase (contagion), prices fall but purchasing power falls faster, unemployment and taxes rise. Affordability becomes the issue. De-globalization expected, local circumstances will matter much more, international and national institutions will become stranded assets from trust perspective. Exploding demand calls for local, community, pooling of resources, social capital and self-sufficiency.
    [Show full text]
  • Analyzing the Energy Industry in United States
    +44 20 8123 2220 [email protected] Analyzing the Energy Industry in United States https://marketpublishers.com/r/AC4983D1366EN.html Date: June 2012 Pages: 700 Price: US$ 450.00 (Single User License) ID: AC4983D1366EN Abstracts The global energy industry has explored many options to meet the growing energy needs of industrialized economies wherein production demands are to be met with supply of power from varied energy resources worldwide. There has been a clearer realization of the finite nature of oil resources and the ever higher pushing demand for energy. The world has yet to stabilize on the complex geopolitical undercurrents which influence the oil and gas production as well as supply strategies globally. Aruvian's R'search’s report – Analyzing the Energy Industry in United States - analyzes the scope of American energy production from varied traditional sources as well as the developing renewable energy sources. In view of understanding energy transactions, the report also studies the revenue returns for investors in various energy channels which manifest themselves in American energy demand and supply dynamics. In depth view has been provided in this report of US oil, electricity, natural gas, nuclear power, coal, wind, and hydroelectric sectors. The various geopolitical interests and intentions governing the exploitation, production, trade and supply of these resources for energy production has also been analyzed by this report in a non-partisan manner. The report starts with a descriptive base analysis of the characteristics of the global energy industry in terms of economic quantity of demand. The drivers of demand and the traditional resources which are used to fulfill this demand are explained along with the emerging mandate of nuclear energy.
    [Show full text]
  • Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy
    Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Prepared under Task No. SAO7.9C50 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Microgrid Market Analysis: Alaskan Expertise, Global Demand
    Microgrid Market Analysis: Alaskan Expertise, Global Demand A study for the Alaska Center for Microgrid Technology Commercialization Prepared by the University of Alaska Center for Economic Development 2 3 Contents Introduction .................................................................................................................................................. 4 Market Trends ............................................................................................................................................... 5 Major Microgrid Segments ....................................................................................................................... 5 Global demand of microgrids ................................................................................................................... 5 Where does Alaska fit into the picture? Which segments are relevant? ................................................. 7 Remote/Wind-Diesel Microgrids .......................................................................................................... 8 Military Microgrid ................................................................................................................................. 8 Microgrid Resources with Examples in Alaska .............................................................................................. 8 Wind .......................................................................................................................................................... 8 Kotzebue ............................................................................................................................................
    [Show full text]
  • The BRIDGE Linking Engin Ee Ring and Soci E T Y
    Spring 2010 THE ELECTRICITY GRID The BRIDGE LINKING ENGIN ee RING AND SOCI E TY The Impact of Renewable Resources on the Performance and Reliability of the Electricity Grid Vijay Vittal Securing the Electricity Grid S. Massoud Amin New Products and Services for the Electric Power Industry Clark W. Gellings Energy Independence: Can the U.S. Finally Get It Right? John F. Caskey Educating the Workforce for the Modern Electric Power System: University–Industry Collaboration B. Don Russell The Smart Grid: A Bridge between Emerging Technologies, Society, and the Environment Richard E. Schuler Promoting the technological welfare of the nation by marshalling the knowledge and insights of eminent members of the engineering profession. The BRIDGE NatiOnaL AcaDemY OF Engineering Irwin M. Jacobs, Chair Charles M. Vest, President Maxine L. Savitz, Vice President Thomas F. Budinger, Home Secretary George Bugliarello, Foreign Secretary C.D. (Dan) Mote Jr., Treasurer Editor in Chief (interim): George Bugliarello Managing Editor: Carol R. Arenberg Production Assistant: Penelope Gibbs The Bridge (ISSN 0737-6278) is published quarterly by the National Aca- demy of Engineering, 2101 Constitution Avenue, N.W., Washington, DC 20418. Periodicals postage paid at Washington, DC. Vol. 40, No. 1, Spring 2010 Postmaster: Send address changes to The Bridge, 2101 Constitution Avenue, N.W., Washington, DC 20418. Papers are presented in The Bridge on the basis of general interest and time- liness. They reflect the views of the authors and not necessarily the position of the National Academy of Engineering. The Bridge is printed on recycled paper. © 2010 by the National Academy of Sciences. All rights reserved.
    [Show full text]
  • Bridge Duel Continues Between State, Moroun
    20090202-NEWS--0001-NAT-CCI-CD_-- 1/30/2009 6:04 PM Page 1 ® www.crainsdetroit.com Vol. 25, No. 5 FEBRUARY 2 – 8, 2009 $2 a copy; $59 a year ©Entire contents copyright 2009 by Crain Communications Inc. All rights reserved Inside State’s UI debt could Bridge duel continues mean higher taxes, Page 3 between state, Moroun Government gives nod for Rehab agency on the road both spans to fiscal recovery, NATHAN SKID/CRAIN’S DETROIT BUSINESS BY BILL SHEA Page 3 Christos Moisides (left) and Michael CRAIN’S DETROIT BUSINESS Sinanis of 23rd Street Studios have a studio site at 23rd and Michigan. The high-stakes standoff be- This Just In tween Manuel Moroun and an international coalition of gov- ernments continues as both Comerica economist: make incremental progress to- Recession is widening Motown ward competing billion-dollar Detroit River crossings. Dana Johnson, the chief The situation got fresh impe- economist for Comerica Bank, tus in recent weeks, thanks to a NATHAN SKID/CRAIN’S DETROIT BUSINESS said the current recession is movies pair of U.S. Department of Trans- Matthew Moroun, vice president of the Detroit International Bridge Co., stands in front of construction of the new bridge span, which will run next to the almost certain to become the portation approvals for the si- current bridge. longest since the 16-month multaneous bridge projects — downturns of 1973 and 1981, 2 groups shooting which include Michigan jointly four-lane structure. tion of infrastructure work on a which would make it the funding infrastructure at one Moroun’s Detroit International new highway interchange serving longest since the Great De- while seeking to build the other Bridge Co.
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • Renewable Energy in Alaska WH Pacific, Inc
    Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Subcontract Report NREL/SR-7A40-47176 March 2013 Contract No. DE-AC36-08GO28308 Renewable Energy in Alaska WH Pacific, Inc. Anchorage, Alaska NREL Technical Monitor: Brian Hirsch Prepared under Subcontract No. AEU-9-99278-01 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-7A40-47176 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication was reproduced from the best available copy submitted by the subcontractor and received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Battle Mountain RMP Scoping Report
    US Department of the Interior Bureau of Land Management Battle Mountain District Office, Nevada Resource Management Plan and Environmental Impact Statement SCOPING SUMMARY REPORT JULY 2011 TABLE OF CONTENTS Section Page SUMMARY .................................................................................................................................. S-1 1. INTRODUCTION ............................................................................................................ 1-1 1.1 Purpose of and Need for the Resource Management Plan ................................................ 1-1 1.2 Description of the RMP Planning Area .................................................................................... 1-2 1.3 Overview of Public Involvement Process ............................................................................... 1-4 1.4 Description of the Scoping Process ......................................................................................... 1-5 1.4.1 Newsletter and Mailing List ......................................................................................... 1-5 1.4.2 Press Release .................................................................................................................. 1-5 1.4.3 Project Website ............................................................................................................. 1-6 1.4.4 Scoping Open Houses .................................................................................................. 1-6 1.4.5 Notice of Intent ............................................................................................................
    [Show full text]
  • Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center
    Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Mark Cerny Miami University Oxord, Ohio May, 2006 ii ABSTRACT Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center by Mark Cerny Wind power is a renewable energy technology currently experiencing a huge growth in popularity due to its cheap cost, widespread availability, and clean nature. Ohio currently has largely unexplored wind resources waiting to be utilized for the generation of electricity. This thesis summarizes an initial feasibility study I conducted to understand the potential for installing a wind turbine at Kirkmont Center in Bellefontaine, OH to take advantage of wind resources on the site. Kirkmont boasts the second highest elevation in the state of Ohio, which makes it an excellent candidate for generating wind power, with average wind speeds of 6-7 m/sec at 30m. In addition, the wind turbine will correspond with the construction of a new interactive educational facility, serving as a valuable educational and marketing tool. My work also included finding potential funding sources, grants, and incentives to help cover the cost of constructing and maintaining the turbine; contacting manufacturers regarding providing their services to Kirkmont; and presenting my findings to the Kirkmont Building Committee. The research for this project was also used for the California Green Stop rest stop design competition with me serving as a consultant on wind power for the design team.
    [Show full text]
  • TB Pickens Misadventure with Wind
    T. Boone’s Windy Misadventure And the Global Backlash Against Wind Energy By Robert Bryce Posted on Jul. 28, 2011 Three years ago this month, T. Boone Pickens launched a multi-million dollar crusade to bring more wind energy to the US. “Building new wind generation facilities,” along with energy efficiency and more consumption of domestic natural gas, the Dallas billionaire claimed, would allow the US to “replace more than one-third of our foreign oil imports in 10 years.” Those were halcyon times for the wind industry. These days, Pickens never talks about wind. He’s focused instead on getting a fat chunk of federal subsidies so he can sell more natural gas to long-haul truckers through his company, Clean Energy Fuels. (Pickens and his wife, Madeleine, own about half of the stock of Clean Energy, a stake worth about $550 million.) While the billionaire works the halls of Congress seeking a subsidy of his very own, he's also trying to find a buyer for the $2 billion worth of wind turbines he contracted for back in 2008. The last news report that I saw indicated that he was trying to foist the turbines off onto the Canadians. Being dumped by Pickens is only one of a panoply of problems facing the global wind industry. Among the issues: an abundance of relatively cheap natural gas, a growing backlash against industrial wind projects due to concerns about visual blight and noise, increasing concerns about the murderous effect that wind turbines have on bats and birds, the extremely high costs of offshore wind energy, and a new study which finds that wind energy’s ability to cut carbon dioxide emissions have been overstated.
    [Show full text]
  • Michigan Wind Vision
    A WIND VISION FOR NEW GROWTH IN MICHIGAN New research shows how expanding wind energy will benefit state economy A New Era for Wind Power in the United States wind energy under the Wind Vision U.S. Department of Energy scenario would result in Michigan Wind Vision report shows landowners receiving over $4.71 million dollars in annual payments potential benefits for Michigan by 2020, increasing to over $7.65 with continued expansion of million dollars annually by 2030. wind power in the state. Michigan farmers and A definitive new report recently families stand to benefit from released by the U.S. Department of significant freshwater savings Energy (DOE) shows huge potential and cleaner air by harvesting for wind power in Michigan and even more electricity from wind ENOUGH ELECTRICITY throughout the United States. The energy. DOE’s “Wind Vision: A New Era for Wind Power in the United States” Continuing to grow Michigan-made wind power offers tremendous water TO POWER finds wind energy could grow from supplying over 3.66% of the conservation and clean air benefits electricity generated in Michigan as well. Meeting the Wind Vision today to 4.8% by 2020 and more scenario would result in more than than 6.8% by 2030 – producing 616.33 million gallons of annual $ electricity for the equivalent of water savings by 2020, and by 2030 710,000 average American homes.* those savings grow to over 4.4 11.6 billion gallons a year. Generations Achieving the Wind Vision in of Michigan families also stand to Michigan would provide the state benefit from added clean air benefits with numerous benefits, including by harvesting more of the state’s MILLION electricity from wind energy.
    [Show full text]