Direct Molecular Simulation of Nitrogen and Oxygen at Hypersonic Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Direct Molecular Simulation of Nitrogen and Oxygen at Hypersonic Conditions Direct Molecular Simulation of Nitrogen and Oxygen at Hypersonic Conditions A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Maninder S. Grover IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Thomas E. Schwartzentruber, Adviser February, 2018 © Maninder S. Grover 2018 ALL RIGHTS RESERVED Acknowledgements A number of people have earned my gratitude for their support, guidance and patience during the course of my graduate career. Firstly, I would like to thank my adviser, Prof. Tom Schwartzentruber for his sup- port, and mentorship, and for affording many opportunities of personal and professional growth throughout my graduate career. Tom has been a great teacher and a source of inspiration for the past four and half years. His enthusiasm and passion for research constantly provided motivation to work hard. I will not forget the overall kindness and support he has shown over the years. Tom will definitely be a role model for me for years to come. I am grateful for the guidance of Dr. Rich Jaffe of NASA's Ames Research Center, for many valuable discussion and teaching moments that he shared during our collaboration. Working with Rich has been one of the highlights of my time as a graduate student and I am honored and humbled to have had this opportunity. I would like to thank Dr. David Hash for his mentorship, support and encouragement through the years. I would also like to thank Dr. David Schwenke, Dr. Michael Barnhardt, and Dr. Brett Cruden at NASA Ames Research Center for enabling the collaboration between the University of Minnesota and NASA, and for valuable inputs during my time as an intern at Ames Research Center. I would like to thank my collaborators at the University of Illinois at Urbana Cham- paign: Prof. Marco Panesi, Robyn Macdonald, and Simone Venturi. Working with them has certainly been an immense learning experience. I am thankful to my collab- orators in the Chemistry Department at the University of Minnesota : Prof. Donald i Truhlar, Dr. Zoltan Varga, and Dr. Yulia Paukku for providing the potential energy surfaces that most of my work is based on and for always being there to clarify any queries and questions that I had regarding the chemistry aspect of this project. I would like to thank Prof. Graham Candler, Prof. Joseph Nichols, and Prof. Steven Girshick for being a part of my committee and the thesis reviewing process. A special thanks to my colleagues Paolo, Savio, Ross, and Narendra for spirited and valuable discussions that we have had over the years and for all the feed-back they have given about my work. I am grateful to my parents and my sister for always cheering me on and supporting me throughout this endeavor. I am grateful to my friends, here in Minnesota for making me feel at home even when I was half a planet away. Finally, I would like to express my gratitude to the Air Force Office of Scientific Research (AFOSR) and the Doctoral Dissertation Fellowship (DDF) for supporting my graduate research. ii \ Far and away the best prize that life has to offer is the chance to work hard at work worth doing. " - Theodore Roosevelt iii Abstract The objective of this thesis is to characterize the gas-phase thermochemical non-equilibrium that occurs during hypersonic flight for nitrogen and oxygen gases. This thesis uses the direct molecular simulation (DMS) method in conjunction with potential energy surfaces (PESs) to provide an in-depth molecular level analysis of inter- nal energy excitation and dissociation of molecular nitrogen due to N2 +N2 and N2 +N interactions. Characteristic vibrational excitation times and non-equilibrium dissocia- tion rate coefficients are calculated using the ab−initio PESs developed at NASA Ames Research Center. Comparison of these rate coefficients and non-equilibrium vibrational energy distributions is carried out against prior work done with nitrogen using an inde- pendently developed ab − initio PES at the University of Minnesota. Good agreement was found between properties predicted by the two PESs. Furthermore, comparative studies were carried out for the nitrogen system between the DMS method and the state-to-state method. The results obtained by the two different methods, are found to be in good agreement. The DMS method is used to calculate benchmark data for vibrational energy exci- tation and non-equilibrium dissociation due to O2 + O interactions. O2 + O interactions are modeled using nine PESs corresponding to. 11A0, 21A0, 11A00, 13A0, 23A0, 13A00 15A0, 25A0 and 15A00 states, which govern electronically adiabatic (ground-electronic- state) collisions of diatomic oxygen with atomic oxygen. This is the first data set in the aerospace community that incorporates all nine PESs for the O2 + O system and fully describes the dynamics of ground state interactions of diatomic oxygen with atomic oxy- gen. Characteristic vibrational excitation times are calculated over a temperature range iv of T = 3000K to T = 15000K. It is observed that the characteristic vibrational exci- tation time for O2 + O interactions is weakly dependent on temperature and increases slightly with increasing temperature. Vibrational excitation is slowest for interactions in the quintet spin state, with the 15A00 state having the slowest excitation rate, and vibrational excitation is fastest on the 11A0 potential energy surface. Non-equilibrium dissociation rate coefficients are calculated over a temperature range of T = 6000K to T = 15000K during quasi-steady state (QSS) dissociation, and the results agree well with experimental data. For the O2 + O2 system interactions can occur over singlet, quintet and triplet spin states. An in-depth analysis of excitation and dissociation on the quintet and singlet surfaces is provided and bench-mark data for excitation using all three PESs for O2 + O2 interactions is presented for a temperature range of T = 5000K to T = 12000K . Finally, this thesis explores internal energy exchange processes in oxygen and nitro- gen. Probability distribution functions for vibrational energy change during collisions are presented (due to N2 + N2 non-reactive collisions, N2 + N2 exchange reactions, N2 + N non-reactive collisions, N2 + N exchange reactions, O2 + O non-reactive col- lisions, and O2 + O exchange reactions). It is shown that non-reactive collisions are less efficient in vibrational energy redistribution when compared to exchange reactions. Furthermore, it is observed that the probability distribution functions for vibrational energy change (for both oxygen and nitrogen) are self-similar and may be modeled by simplified functional forms. v Contents Acknowledgementsi Dedication iii Abstract iv List of Tables ix List of Figuresx 1 Introduction1 1.1 Challenges of Hypersonic Flight.......................1 1.2 Contemporary work.............................4 1.3 Introduction to Direct Molecular Simulation................5 1.4 Outline....................................6 2 Potential Energy Surfaces8 2.1 Introduction..................................8 2.2 Spin multiplicity and spatial symmetry................... 12 2.3 Potential energy surfaces for nitrogen.................... 15 2.3.1 Ab-initio potential energy surfaces................. 16 2.3.2 Site-to-site potential energy surface................. 20 2.4 Potential energy surfaces for oxygen.................... 22 2.4.1 Potential energy surfaces for O3 interactions............ 22 vi 2.4.2 Potential energy surfaces for O4 interactions............ 26 3 Physical Model and Numerical Method 28 3.1 Introduction.................................. 28 3.2 Direct molecular simulation......................... 30 3.2.1 Numerical method.......................... 30 3.2.2 Trajectory calculations and parallel implementation....... 33 3.2.3 Validation with molecular dynamics................ 40 3.3 Code implementation............................. 43 3.3.1 Normal shock waves......................... 43 3.3.2 Multidimensional flows........................ 45 3.3.3 Chemically reacting isothermal systems.............. 46 4 Rovibrational Coupling in Normal Shocks 52 4.1 Introduction.................................. 52 4.2 Rovibrational coupling in normal shock waves............... 53 5 Direct Molecular Simulation of Nitrogen 57 5.1 Introduction.................................. 57 5.2 Effect of PES on the N2 + N2 system.................... 58 5.2.1 Vibrational energy excitation.................... 58 5.2.2 Nonequilibrium dissociation..................... 59 5.3 Effect of numerical method on the N2 + N2 system............ 64 5.3.1 Internal energy excitation...................... 66 5.3.2 Nonequilibrium dissociation..................... 68 5.4 Effect of PES on the N2 + N system.................... 71 5.4.1 Vibrational energy excitation.................... 71 5.4.2 Non-equilibrium dissociation.................... 76 5.5 Effect of numerical method on the N2 + N system............ 80 5.5.1 Internal energy excitation...................... 81 5.5.2 Nonequilibrium dissociation..................... 83 vii 5.6 Comparison of N4 system to N3 + N4 system............... 85 5.7 Comparison of ab − initio results for the full nitrogen system...... 87 5.8 Conclusions.................................. 88 6 Direct Molecular Simulation of Oxygen 92 6.1 Direct molecular simulation of O2 + O interactions............ 92 6.1.1 Introduction............................. 92 6.1.2 Simulation of O2 + O interactions................. 93 6.1.3 Vibrational energy excitation by O2 + O interactions....... 97
Recommended publications
  • Review Sheet on Determining Term Symbols
    Review Sheet on Determining Term Symbols Term symbols for electronic configurations are useful not only to the spectroscopist but also to the inorganic chemist interested in understanding electronic and magnetic properties of molecules. We will concentrate on the method of Douglas and McDaniel (p. 26ff); however, you may find other treatments equal or superior to the D & M method. Term symbols are a shorthand method used to describe the energy, angular momentum, and spin multiplicity of an atom in any particular state. The general form is a given as Tj where T is a capital letter corresponding to the value of L (the angular momentum quantum number) and may be assigned as S, P, D, F, G, … for |L| = 0, 1, 2, 3, 4, … respectively. The superscript “a” is called the spin multiplicity and can be evaluated as a = 2S +1 where S is the spin quantum number. The subscript “j” is the numerical value of J, a new quantum number defined as: J = l +S, which corresponds to the total orbital and spin angular momentum of the system. The term symbol 3P is read as triplet – Pee state and indicates that there are two unpaired electrons in a state with maximum orbital angular momentum, L=1. The number of microstates (N) of a system corresponds to the total number of distinct arrangements for “e” number of electrons to be placed in “n” number of possible orbital positions. N = # of microstates = n!/(e!(n-e)!) For a set of p orbitals n = 6 since there are 2 positions in each orbital.
    [Show full text]
  • States of Oxygen Liquid and Singlet Oxygen Photodynamic Therapy
    Oxygen States of Oxygen As far as allotropes go, oxygen as an element is fairly uninteresting, with ozone (O3, closed-shell and C2v symmetric like SO2) and O2 being the stable molecular forms. Most of our attention today will be devoted to the O2 molecule that is so critically connected with life on Earth. 2 2 2 4 2 O2 has the following valence electron configuration: (1σg) (1σu) (2σg) (1πu) (1πg) . It is be- cause of the presence of only two electrons in the two π* orbitals labelled 1πg that oxygen is paramagnetic with a triplet (the spin multiplicity \triplet" is given by 2S+1; here S, the total spin quantum number, is 0.5 + 0.5 = 1). There are six possible ways to arrange the two electrons in the two degenerate π* orbitals. These different ways of arranging the electrons in the open shell are called \microstates". Further, because there are six microstates, we can say that the total degeneracy of the electronic states 2 3 − arising from (1πg) configuration must be equal to six. The ground state of O2 is labeled Σg , the left superscript 3 indicating that this is a triplet state. It is singly degenerate orbitally and triply degenerate in terms of spin multiplicity; the total degeneracy (three for the ground state) is given by the spin times the orbital degeneracy. 1 The first excited state of O2 is labeled ∆g, and this has a spin degeneracy of one and an orbital degeneracy of two for a total degeneracy of two. This state corresponds to spin pairing of the electrons in the same π* orbital.
    [Show full text]
  • Photochemical and Magnetic Properties of Complex and Nuclear Chemistry
    • Programme: MSc in Chemistry • Course Code: MSCHE2001C04 • Course Title: Photochemical and magnetic properties of complex and nuclear chemistry • Unit: Electronic spectra of coordination compounds • Course Coordinator: Dr. Jagannath Roy, Associate Professor, Department of Chemistry, Central University of South Bihar Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from text books, e-books, research articles, wikipedia and other online resources. 1 Course Objectives: 1. To make students understand structure and propeties of inorganic compounds 2. To accuaint the students with the electronic spectroscopy of coordination compounds 3. To introduce the concepts of magnetochemistry among the students for analysing the properties of complexes. 4. To equip the students with necessary skills in photochemical reaction transition metal complexes 5. To develop knowledge among the students on nuclear and radio chemistry Learning Outcomes: After completion of the course, learners will be able to: 1. Analyze the optical/electronic spectra of coordination compounds 2. Make use of the photochemical behaviour of complexes in designing solar cells and other applications. 3. Design and perform photochemical reactions of transition metal complexes 4. Analyze the magnetic properties of complexes 5. Explain the various phenomena taking place in the nucleus 6. Understand the working of nuclear reactors 2 Lecture-1 Lecture Topic- Introduction to the Electronic Spectra of Transition Metal complexes 3 Crystal field theory (CFT) is ideal for d1 (d9) systems but tends to fail for the more common multi- electron systems. This is because of electron-electron repulsions in addition to the crystal field effects on the repulsion of the metal electrons by the ligand electrons.
    [Show full text]
  • The Chemistry of Carbene-Stabilized
    THE CHEMISTRY OF CARBENE-STABILIZED MAIN GROUP DIATOMIC ALLOTROPES by MARIHAM ABRAHAM (Under the Direction of Gregory H. Robinson) ABSTRACT The syntheses and molecular structures of carbene-stabilized arsenic derivatives of 1 1 i 1 1 AsCl3 (L :AsCl3 (1); L : = :C{N(2,6- Pr2C6H3)CH}2), and As2 (L :As–As:L (2)), are presented herein. The potassium graphite reduction of 1 afforded the carbene-stabilized diarsenic complex, 2. Notably, compound 2 is the first Lewis base stabilized diatomic molecule of the Group 13–15 elements, in the formal oxidation state of zero, in the fourth period or lower of the Periodic Table. Compound 2 contains one As–As σ-bond and two lone pairs of electrons on each arsenic atom. In an effort to study the chemistry of the electron-rich compound 2, it was combined with an electron-deficient Lewis acid, GaCl3. The addition of two equivalents of GaCl3 to 2 resulted in one-electron oxidation of 2 to 1 1 •+ – •+ – give [L :As As:L ] [GaCl4] (6 [GaCl4] ). Conversely, the addition of four equivalents of GaCl3 to 2 resulted in two- electron oxidation of 2 to give 1 1 2+ – 2+ – •+ [L :As=As:L ] [GaCl4 ]2 (6 [GaCl4 ]2). Strikingly, 6 represents the first arsenic radical to be structurally characterized in the solid state. The research project also explored the reactivity of carbene-stabilized disilicon, (L1:Si=Si:L1 (7)), with borane. The reaction of 7 with BH3·THF afforded two unique compounds: one containing a parent silylene (:SiH2) unit (8), and another containing a three-membered silylene ring (9).
    [Show full text]
  • Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
    Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N.
    [Show full text]
  • Chemical Shift (Δ)
    Chapter 9 ● Nuclear Magnetic Resonance Ch. 9 - 1 1. Introduction Classic methods for organic structure determination ● Boiling point ● Refractive index ● Solubility tests ● Functional group tests ● Derivative preparation ● Sodium fusion (to identify N, Cl, Br, I & S) ● Mixture melting point ● Combustion analysis ● Degradation Ch. 9 - 2 Classic methods for organic structure determination ● Require large quantities of sample and are time consuming Ch. 9 - 3 Spectroscopic methods for organic structure determination a) Mass Spectroscopy (MS) ● Molecular Mass & characteristic fragmentation pattern b) Infrared Spectroscopy (IR) ● Characteristic functional groups c) Ultraviolet Spectroscopy (UV) ● Characteristic chromophore d) Nuclear Magnetic Resonance (NMR) Ch. 9 - 4 Spectroscopic methods for organic structure determination ● Combination of these spectroscopic techniques provides a rapid, accurate and powerful tool for Identification and Structure Elucidation of organic compounds ● Rapid ● Effective in mg and microgram quantities Ch. 9 - 5 General steps for structure elucidation 1. Elemental analysis ● Empirical formula ● e.g. C2H4O 2. Mass spectroscopy ● Molecular weight ● Molecular formula ● e.g. C4H8O2, C6H12O3 … etc. ● Characteristic fragmentation pattern for certain functional groups Ch. 9 - 6 General steps for structure elucidation 3. From molecular formula ● Double bond equivalent (DBE) 4. Infrared spectroscopy (IR) ● Identify some specific functional groups ● e.g. C=O, C–O, O–H, COOH, NH2 … etc. Ch. 9 - 7 General steps for structure elucidation 5. UV ● Sometimes useful especially for conjugated systems ● e.g. dienes, aromatics, enones 6. 1H, 13C NMR and other advanced NMR techniques ● Full structure determination Ch. 9 - 8 Electromagnetic spectrum cosmic X-rays ultraviolet visible infrared micro- radio- & γ-rays wave wave λ: 0.1nm 200nm 400nm 800nm 50µm IR X-Ray UV NMR Crystallography 1Å = 10-10m 1nm = 10-9m 1µm = 10-6m Ch.
    [Show full text]
  • Arxiv:1906.08544V1 [Cond-Mat.Mes-Hall]
    Exchange rules for diradical π-conjugated hydrocarbons R. Ortiz1,2,4, R. A. Boto3, N. Garc´ıa-Mart´ınez1,2, J. C. Sancho-Garc´ıa4, M. Melle-Franco3, J. Fern´andez-Rossier1∗ (1) QuantaLab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jos´eVeiga, 4715-330 Braga, Portugal (2)Departamento de F´ısica Aplicada, Universidad de Alicante, 03690, Sant Vicent del Raspeig, Spain (3) CICECO, Departamento de Qu´ımica, Universidade de Aveiro, 3810-193 Aveiro, Portugal and (4)Departamento de Qu´ımica F´ısica, Universidad de Alicante, 03690, Sant Vicent del Raspeig, Spain (Dated: June 21, 2019) A variety of planar π-conjugated hydrocarbons such as heptauthrene, Clar’s goblet and, recently synthesized, triangulene have two electrons occupying two degenerate molecular orbitals. The re- sulting spin of the interacting ground state is often correctly anticipated as S = 1, extending the application of Hund’s rules to these systems, but this is not correct in some instances. Here we provide a set of rules to correctly predict the existence of zero mode states, as well as the spin multiplicity of both the ground state and the low-lying excited states, together with their open- or closed-shell nature. This is accomplished using a combination of analytical arguments and configu- ration interaction calculations with a Hubbard model, both backed by quantum chemistry methods with a larger Gaussian basis set. Our results go beyond the well established Lieb’s theorem and Ovchinnikov’s rule, as we address the multiplicity and the open-/closed-shell nature of both ground and excited states. PACS numbers: I.
    [Show full text]
  • Nitrogen Versus Phosphorus
    The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Electronegativity for carbon: 2.5 Electronegativity for hydrogen: 2.2 Inorganic Chemistry 5.03 The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Electronegativity for carbon: 2.5 Electronegativity for hydrogen: 2.2 Inorganic Chemistry 5.03 The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Electronegativity for carbon: 2.5 Electronegativity for hydrogen: 2.2 Inorganic Chemistry 5.03 The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Quartet ground state, spin multiplicity given by 3 2S + 1 = 2( 2 ) + 1 = 4 3 1 1 3 Four possible values for the spin: + 2 , + 2 , − 2 , − 2 Inorganic Chemistry 5.03 The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Quartet ground state, spin multiplicity given by 3 2S + 1 = 2( 2 ) + 1 = 4 3 1 1 3 Four possible values for the spin: + 2 , + 2 , − 2 , − 2 Inorganic Chemistry 5.03 The Free Atom Atomic energy levels, valence orbital ionization energies (VOIE) Quartet ground state, spin multiplicity given by 3 2S + 1 = 2( 2 ) + 1 = 4 3 1 1 3 Four possible values for the spin: + 2 , + 2 , − 2 , − 2 Inorganic Chemistry 5.03 Single versus Triple Bonds Atomic energy levels, valence orbital ionization energies (VOIE) ◦ ∆Hf for P2 is +144 kJ/mol ◦ ∆Hf for P≡N is +104 kJ/mol Inorganic Chemistry 5.03 Single versus Triple Bonds Atomic energy levels, valence orbital ionization energies (VOIE) ◦ ∆Hf for P2 is +144 kJ/mol ◦ ∆Hf for P≡N
    [Show full text]
  • Recent Progress in Quinoidal Singlet Biradical Molecules
    Received: November 2, 2014 | Accepted: November 21, 2014 | Web Released: November 29, 2014 CL-140997 Highlight Review Recent Progress inQuinoidal Singlet Biradical Molecules Takashi Kubo Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (E-mail: [email protected]) Takashi Kubo was born in Yamaguchi, Japan, in 1968. He graduated from Osaka University in 1991, received M.Sc. in 1993 under the guidance of Professor Ichiro Murata, and received Ph.D. in 1996 under the guidance of Professor Kazuhiro Nakasuji.After working at Mitsubishi Chemical Co., he joined Professor Nakasuji’s group at Department of Chemistry, Graduate School of Science, Osaka University in 2000 as Assistant Professor. In 2006 he served as Associate Professor. Since 2006 he is Professor of Graduate School of Science, Osaka University. He received the Bulletinof the Chemical Society of Japan Award in 2001. His research interests are structural and physical organic chemistry, mainly the syntheses and properties of polycyclic aromatic compounds with open-shell character, and the development of multifunctional materialsusing a cooperative proton- and electron-transfer system. Chem. Lett. 2015, 44, 111–122 | doi:10.1246/cl.140997 © 2015 The Chemical Society of Japan | 111 Abstract Ph Ph Ph Ph Elusive nature inspin state isafeature of singlet biradical Ph Ph Ph Ph molecules and arises from the weak coupling of unpaired 2 l i i li i f i e ectrons. Th shgh ght rev ew ocuses on recent advances n i i i i ’ f l f experimental approaches for elucidating the electronic structure F gure 2.
    [Show full text]
  • Appendix a Mathematical Operations
    Appendix A Mathematical Operations This appendix presents a number of mathematical techniques and equations for the convenience of the reader. Although we have attempted to sum­ marize accurately some of the most useful relations, we make no attempt at rigor. A bibliography is included at the end of this appendix. A-1 COMPLEX NUMBERS A complex quantity may be represented as follows: u = x + iy = re+i<l> (A-I) where i 2 = -1, x, y, r, and cp are real numbers and ei<l> = cos cp + i sin cpo One refers to x and y as the real and the imaginary components, respectively of u, whereas r is the absolute magnitude of u, that is, r = lui. cp is called the phase angle. The complex conjugate of u, viz., u*, is obtained by changing the sign of i wherever it appears; that is, u* = x - iy. The relation between complex numbers and their conjugates is clarified by representing them as points in the "complex plane" (Argand diagram, see Fig. A-I). The abscissa is chosen to represent the real axis (x), and the ordinate the imaginary axis 391 392 ELECTRON SPIN RESONANCE Imaginary axis u iy ~E2---------t-- Real axis u' Fig. A-l Representation of a point u and of its complex conjugate u* in complex space (Argand diagram). (y). Note that the real component of u is equal to one-half the sum of u and u*; the product of u and its complex conjugate is the square of the absolute magnitude, that is, (A-2) A-2 OPERATOR ALGEBRA A-2a.
    [Show full text]
  • Aggregation-Induced Radical of Donor-Acceptor Organic Semiconductors
    Aggregation-Induced Radical of Donor-Acceptor Organic Semiconductors Zhongxin Chen,1 Yuan Li*,1 Weiya Zhu,1 Zejun Wang,1 Wenqiang Li,1 Miao Zeng,1 Fei Huang*1 1 Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China * Correspondence author: [email protected], [email protected] Abstract Narrow bandgap donor-acceptor organic semiconductors are generally considered to show closed-shell singlet ground state and their radicals are reported as impurities, polarons, charge transfer state monoradical or defects. Herein, we reported the open-shell singlet diradical electronic ground state of two diketopyrrolopyrrole-based compounds Flu-TDPP and DTP- TDPP via the combination of variable temperature NMR, variable temperature electron spin spectroscopy (ESR), superconducting quantum interference device magnetometry, and theoretical calculations. It is observed that the quinoid-diradical character is significantly enhanced in aggregation state because of the limitation of intramolecular rotation. Consequently, we propose a mechanism of aggregation-induced radical to understand the driving force of the open-shell diradical formation of DTP-TDPP based on the ESR spectroscopy test in different proportions of mixed solvents. Our results demonstrate the thermally-excited triplet state for donor-acceptor organic semiconductors, providing a novel view to comprehend the intrinsic chemical structure of donor-acceptor organic semiconductors, as well as the potential electronic transition process between ground state and excited state. 1 Introduction In the recent more than 30 years, organic semiconductors (OSCs) exhibited great application potential in organic light-emitting diodes (OLEDs),1, 2 organic photovoltaics (OPVs),3, 4 organic field-effect transistors (OFETs),5-7 organic photodetectors (OPDs)4 and other organic electronic devices8.
    [Show full text]
  • OXIDE and SEMICONDUCTOR MAGNETISM
    OXIDE and SEMICONDUCTOR MAGNETISM J. M. D. Coey Physics Department, Trinity College, Dublin 2 Ireland. 1. Single-ion effects 2. Collective Effects 3. Examples www.tcd.ie/Physics/Magnetism Boulder July 2003 1 Some references: Magnetic oxides: D. J. Craik (editor) Wiley-Interscience 1975 Magnetism and the chemical bond: J. B. Goodenough Wiley-Interscience 1963 Introduction to ligand field theory. C. Ballhausen McGraw Hill 1962 Mineralogical applications of crystal-field theory. R. G. Burns CUP 1993 (2nd ed.) Point charge calculations of energy levels of magnetic ions in crystalline electric fields. M. T. Hutchings Solid State Physics 16 227 - 73 (1964) Boulder July 2003 2 1. Single-ion effects 1.1 Ubiquity of oxides. Oxide structures. Octahedral and tetrahedral sites. Magnetic ions – 3d, 4d, 4f. 1.2. Electronic structure of free ions (summary). Hund’s rules. g- factors. Paramagnetic susceptibility. 1.3. Ions in solids. Crystal field. Crystal field Hamiltonian. One-electron states. 3d t2g and eg states. Notation. 2p-3d hybridization. One- electron energy-level diagrams in different symmetry. Quenching of orbital moment. Many-electron states. Orgel and Tanabe-Sugano diagrams. 1.4. Crystal field and anisotropy. Single-ion anisotropy. Determination m of Bn . Boulder July 2003 3 1.1 Ubiquity of Oxides Earth’s crust is composed almost entirely of oxides — rocks, economic minerals, water. Composition in atomic % 2- Oxygen (O ) is most abundant Fe O followed by silicon (Si4+) and Si aluminium (Al3+). Al3+ Al Crust is mostly composed of Fe aluminosilicates. Mg Iron (Fe2+/Fe3+) is most O2- Si4+ Ca abundant magnetic element. It is K 40 times as abundant as all other magnetic elements Na together.
    [Show full text]