Impact of Quality in Orbital Science's Human Spaceflight Programs

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Quality in Orbital Science's Human Spaceflight Programs Impact of Quality in Orbital Science’s Human Spaceflight Programs Presented at the 20th Conference on Quality in the Space and Defense Industries Frank L. Culbertson Senior Vice President and Deputy General Manager Advanced Programs Group Agenda Orion COTS/CRS SRQ&A Impact on Programs 2 Orion 3 Orion Launch Abort System Summary LAS is Designed to Remove the Crew during a Launch Vehicle Failure While on the Pad Up to Nominal Jettison at Approximately 200 kft LAS Accomplishes this Mission Using Three Solid Motors Trajectory Optimization During the Abort Lightweight Composite Structures 4 PA-1 Mission The PA-1 LAS has over 300 Instruments on It to Measure the Flight Environments During the Test Flight PA-1 Mission: Demonstrate Pad Abort Capability 5 PA-1 Integration Complete 6 PA-1 Flight Test May 6, 2010 – Success! •The Launch Abort System Developed for the Orion Crew Exploration Vehicle Was Successfully Tested on May 6, 2010. •The 97-second Flight Test Was the First Fully Integrated Test of the Launch Abort System Developed for Orion 7 COTS/CRS 8 Low Earth Orbit Transfer Operations Drawing Upon Its 30 Years Of Satellite And Major Space Systems Development And Operations Experience, Orbital Sciences Corporation Has Embarked On A New Venture To Provide Low Earth Orbit Cargo Transfer Services To NASA’s ISS Program • Under the joint NASA / Orbital Commercial Orbital Transportation Services (COTS) program, Orbital is Developing the “Cygnus” Advanced Maneuvering Space Vehicle, Which is Designed to Meet the Stringent Safety Requirements for International Space Station (ISS) Operations. • The Cygnus Spacecraft Will Provide Cargo Resupply to the ISS Program under the Cargo Resupply Services Contract 9 International Space Station Overview The International Space Station is the largest and most complex international scientific project in history. Led by the United States, the International Space Station draws upon the scientific and technological resources of 16 nations: Canada, Japan, Russia, 11 nations of the European Space Agency, and Brazil More than four times as large as the Russian Mir space station, the completed International Space Station will have a mass of about 472,000 kg. It will measure 356 feet across and 290 feet long, with almost an acre of solar panels to provide electrical power to six state-of-the-art laboratories. The station is in an orbit with an altitude of approximately 400 km with an inclination of 51.6 degrees. The orbit provides excellent Earth observations with coverage of 85 percent of the globe and over flight of 95 percent of the population. The ISS houses an international crew of 6. 10 2012 a Big Year For Cygnus and Antares COTS Demo and CRS Orb-1 Spacecraft in Advanced Testing Thermal Vacuum Testing, Mechanical Environments for COTS Demo EMI/EMC Testing, Thermal Vacuum Testing and Mechanical Environments for Orb-1 Demo Software Ready for Final Joint Testing Antares Forging Ahead with Significant Hardware Deliveries and Integration Activities for Test Launch and COTS Demo Launchers Pad Turnover in Less Than 2 Months! 11 Update – Welcome Antares PAYLOAD FAIRING • 3.9 meter diameter by 9.9 meter envelope • Composite Construction • Non-contaminating Separation Systems Designed to Provide STAGE 2 Versatile, Cost-effective • ATK CASTOR® 30/30B Solid Motor with Active Thrust Vectoring Access to Space for • Orbital MACH avionics module Medium-Class Payloads • Cold-gas 3-axis Attitude Control System Currently Under Contract STAGE 1 to Support NASA • Liquid Oxygen/RP-1 fueled International Space Station • Two AJ26 engines with independent thrust vectoring (ISS) Re-supply Missions • 3.9 meter booster derived from heritage Zenit design 12 Antares Hardware Progress Booster Main Engine Upper Stack System Upper Stack & st 1 Four Engines Cygnus Pathfinder Successfully Complete Hot-fire Tested @ Upper Stack Stennis Integration @ st 1 Three Engines Wallops Delivered to Wallops Avionics Testing Hot Fire Test Engines Complete Integrated into Engine Hot Fire and Test Flight Boosters Section Being Processed @ Wallops CRS Launch Cores Delivered ORB-1 Launch Booster Tankage Complete 13 Antares WFF Launch Site Progress Horizontal Integration Launch Pad Infrastructure Facility Ramp & Flame HIF GSE Trench Complete Delivered Tanks Installed TEL Complete Deluge Tower Transporters Complete Available TEL Pathfinder On-Going Structure Complete Interior Complete Occupancy 3/11 14 Wallops Launch Pad Nearing Completion 15 TEL Pathfinder Nov 2011 Featuring Rapid Retract and 2X Load Proof Test 16 Aft Bay Mated to Core for Pad Hot Fire 17 Engine 7 Acceptance Testing - 17 Nov 2011 18 Cygnus Service Modules for Demo and Orb-1 in Test at Dulles VA Orbital Proprietary Information 19 Orb 1 Cygnus Service Module in EMI and TVAC Testing at Dulles VA Orbital Proprietary Information 20 Pressurized Cargo Modules at Thales Alenia, Italy 21 Demo Mission Pressurized Cargo Module at Wallops Flight Facility 22 Service Module/Pressurized Cargo Module Fit Check Phased Safety Review 24 COTS/CRS Safety Implementation Process Cygnus safety requirements defined in the COTS Interface Requirements Document (IRD), with specific requirements for control of Catastrophic and Critical hazards Has been overriding consideration in Cygnus design trades, from inception of the program Redundancy in critical hardware functions Follows “phased” safety review process with JSC/ISS Safety Review Panel (SRP) 3 Phases that correlate to spacecraft design maturity First Review (Phase I) conducted in February 2009, with 80% of the SRP’s attention directed to the Cygnus “Collision” hazard report Cygnus Phase II safety review (for detailed design phase) was successfully completed in November 2009 Follow-on reviews have been held to brief the SRP on design updates and testing issues Phase III Review in progress All hazard reports but Collision have been presented to the Board Some hazard controls have been closed to the “Verification Test Log” – to be closed closer to flight Phase I Lessons Learned Show top-down approach to addressing system hazards Puts emphasis on System Engineering; de-emphasizes subsystem bottoms-up approach Show how causes logically map to the system architecture Show that the Nominal Mission works and is safe End to end vehicle performance works and is safe (under nominal scenarios) Description of mission phases, including hardware required and performance criteria End-to-end description of sensor to effector control functions Analysis of error budgets (e.g. Trajectory, Navigation, Guidance, Control, Etc.) during approach to control trajectory dispersions Fault tolerant approach for each failure and error type Avoid overreliance on heritage spacecraft hardware and software Can provide confidence in selected units, but must verify system requirements met for ISS Visiting Vehicles Clearly demonstrate robustness of the Control Loop architecture Show separate, independent control paths for inhibits and controls Bias toward simplicity and control of hazard by design, as opposed to “reactive” controls Phase I Lessons Learned (cont) SAFE ABORT THRESHOLD Address Time-to-Effect •Minimize its application •Clarify the limited situations where we have A non- zero time-to-effect versus where prevention is BUDGET ALLOC utilized •Show by analysis our system time-to-effect FAULT DYNAMICS limitations, and that we are safe with our implementation (see next slides) FDIR THRESHOLD Nominal Performance = expected system performance FDIR Threshold = trigger limit for a fault (value in SW) NOMINAL PERF Fault Dynamics = worst case vehicle motion upon hitting FDIR limit (where you really are by end of the response) Includes uncertainties, persistence, disable, switching, initialization, & transients Budget Allocation = budgeted performance including worst- case uncertainties and transitions Prefer to have larger than Fault Dynamics, but might not be in all cases Safe Abort Threshold = auto-abort March 2010 Slide 27 Phase I Lessons Learned (cont) The Major Takeaways Successful completion of the Safety process requires engagement of the entire engineering team! S&MA, Systems, Subsystem leads Safety design fully integrated into the System architecture Strong review role by Chief Engineer, Program Management and independent senior staff Technical leadership must come from within the project Consultants and Engineering Support contractors can provide an important support and/or review role, but leadership must be within the project Successful Safety program requires total integration of the S&MA and Engineering teams SRP Phase III Progress to Date Date Event Products July 20 Data Drop: SRP Phase III Part 1 HRs • CYG-03, -04, -05, -09, -11, -14 2011 • Supporting Evidence August 12 Data Drop: CBCS Analysis / FDIR Design • CBCS Analysis 2011 • CBCS Hardware Analysis • CBCS Timing Analysis • FDIR Design Documents August 24-26 SRP TIM: CBCS Analysis / FDIR Review • Summary Presentation (dropped Aug 15) 2011 September 1 SRP III Part 1: Review of 6 HRs • Summary Presentation (dropped Aug 31) 2011 • July 20 Data Drop September 30 Data Drop: SRP Phase III Part 2 HRs • CYG-02, -06, -07, -08, -10, -12, -13, -15 2011 • Supporting Evidence October 18-20 SRP III Part 2: Review of 8 HRs • Summary Presentation (dropped Oct 14) 2011 • Vol 3 – Evidence Index (dropped Oct 14) • September 30 Data Drop November 8-9 SRP TIM: FDIR Design / CBCS Analysis Part 2 • Action Item Closure from Aug 24-26 Mtg 2011 • System Timeline and Operability Analysis •
Recommended publications
  • IAF-01-T.1.O1 Progress on the International Space Station
    https://ntrs.nasa.gov/search.jsp?R=20150020985 2019-08-31T05:38:38+00:00Z IAF-01-T.1.O1 Progress on the International Space Station - We're Part Way up the Mountain John-David F. Bartoe and Thomas Holloway NASA Johnson Space Center, Houston, Texas, USA The first phase of the International Space Station construction has been completed, and research has begun. Russian, U.S., and Canadian hardware is on orbit, ard Italian logistics modules have visited often. With the delivery of the U.S. Laboratory, Destiny, significant research capability is in place, and dozens of U.S. and Russian experiments have been conducted. Crew members have been on orbit continuously since November 2000. Several "bumps in the road" have occurred along the way, and each has been systematically overcome. Enormous amounts of hardware and software are being developed by the International Space Station partners and participants around the world and are largely on schedule for launch. Significant progress has been made in the testing of completed elements at launch sites in the United States and Kazakhstan. Over 250,000 kg of flight hardware have been delivered to the Kennedy Space Center and integrated testing of several elements wired together has progressed extremely well. Mission control centers are fully functioning in Houston, Moscow, and Canada, and operations centers Darmstadt, Tsukuba, Turino, and Huntsville will be going on line as they are required. Extensive coordination efforts continue among the space agencies of the five partners and two participants, involving 16 nations. All of them continue to face their own challenges and have achieved significant successes.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]
  • Space Debris
    IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Building and Maintaining the International Space Station (ISS)
    / Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Cygnus-Derived Exploration from ISS to the Moon and Beyond
    Cygnus-derived Exploration from ISS to the Moon and Beyond Mike Fuller Future In-Space Operations (FISO) Director, Business Development Propulsion Systems 22 April 2020 Derek M. Hodgins Director, Business Development Human Exploration 1 Introduction to Northrop Grumman 2 Northrop Grumman Space Systems • Northrop Grumman Space Systems (NGSS) brings together NG’s comprehensive space capabilities from its former Aerospace Systems, Mission Systems, and Innovation Systems sectors • Headquarters: Dulles, Virginia (Washington, D.C., area) • Approximately 23,000 Employees • Facilities in 48 states and several overseas locations • NGSS is an industry leading provider of end-to-end space and launch systems and capabilities serving national security, civil and commercial customers. • NGSS Launch Systems is providing the five segment boosters for NASA's Space Launch System (SLS) and the main launch-abort motor and the attitude control motor for the Orion Crew Vehicle’s Launch Abort System (LAS). • In addition NG propulsion systems are employed in the company's Pegasus, Minotaur, Antares and OmegA rockets as well as in Delta IV and commercial launch vehicles. • NGSS Tactical Space covers Civil & Commercial Satellites (CCS) and National Security Space, including CCS’s NASA Human Exploration and Operations (HEO) and Science, and Commercial Satellites 3 Cygnus • NG is the prime contractor and developer of the Cygnus spacecraft, providing logistics support to the International Space Station (ISS) under NASA’s Cargo Resupply Service (CRS) contract, including commercial and science payloads – Developed in an innovative Public-Private Partnership with NASA, over 50% of its development was privately funded • Cygnus is designed to be an advanced maneuvering spacecraft, incorporating elements drawn from Northrop Grumman and its partners’ existing, flight-proven spacecraft technologies.
    [Show full text]
  • Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism
    Loyola of Los Angeles International and Comparative Law Review Volume 36 Number 2 Fall 2014 Article 2 Fall 11-1-2014 Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism Caley Albert Follow this and additional works at: https://digitalcommons.lmu.edu/ilr Part of the Law Commons Recommended Citation Caley Albert, Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism, 36 Loy. L.A. Int'l & Comp. L. Rev. 233 (2014). Available at: https://digitalcommons.lmu.edu/ilr/vol36/iss2/2 This Article is brought to you for free and open access by the Law Reviews at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Loyola of Los Angeles International and Comparative Law Review by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. ALBERT_FINAL_FOR_PUB 10/14/2014 2:19 PM Liability in International Law and the Ramifications on Commercial Space Launches and Space Tourism CALEY ALBERT I. INTRODUCTION In the beginning, space exploration and the use of space were opportunities exclusively reserved for national governments.1 However, in the twenty-first century, this statement is no longer true as commercial companies begin to take center stage in a field that was exclusively reserved for governments. An article written in 1984 states that “[t]he recent development of the United States space shuttle marks a new era in the commercial utilization of outer space. Although the shuttle is currently being operated by the federal government, the new space transportation system will result in greater use of the space by private industries.”2 While the author may have predicted this event two decades early, his prediction was nonetheless accurate.
    [Show full text]
  • An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions
    An Assessment of Cost Improvements in the NASA COTS/CRS Program and Implications for Future NASA Missions Edgar Zapataa National Aeronautics and Space Administration, Kennedy Space Center, FL, 32899 In May 2012, the SpaceX Dragon spacecraft became the first commercial spacecraft to arrive at the International Space Station (ISS). This achievement, and that of other partners in the NASA Commercial Orbital Transportation Services (COTS) program, would surface difficult questions about NASA’s other more traditional development processes and their traditionally high costs. The cost of the non-traditional COTS public private partnership for the development of spacecraft and launch systems, and later the prices for services to deliver cargo to the ISS, would be praised or criticized by one measure of cost versus another, often with little regard for consistency or data. The goal here is to do the math, to bring rigorous life cycle cost (LCC) analysis into discussions about COTS program costs. We gather publicly available cost data, review the data for credibility, check for consistency among sources, and rigorously define and analyze specific cost metrics. This paper shows quantitatively that the COTS development and later the operational Commercial Resupply Services (CRS) are significant advances in affordability by any measure. To understand measureable improvements in context, we also create and analyze an apples-to-apples scenario where the Space Shuttle would have fulfilled the ISS cargo requirement versus the COTS/CRS launchers and spacecraft. Alternately, we review valid questions that arise where measures or comparisons are not easy or break down, with no quantitative path to clear conclusions.
    [Show full text]