Neocaledonian Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Neocaledonian Vegetation Plant Formations in the Neocaledonian BioProvince Peter Martin Rhind Neocaledonian Tropical Rainforest These can be broadly divided into lowland forests and montane forests. The lowland component has a very mixed composition with many endemic gymnosperms such as Agathis lanceolata, A. ovata, Araucaria bernieri (Araucariaceae), Dacrydium araucarioides, Dacrycarpus vieillardii (Podocarpaceae) and Falcatifolium taxoides (Podocarpaceae). The main angiosperm trees include endemics such as Calophyllum neocaledonia, Montrouziera cauliflora (Clusiaceae), Neoguillauminia cleopatra (Fabaceae) and species of the endemic genus Sleumerodendron (Proteaceae). Smaller under storey trees may include the endemic Alphitonia austrocaledonica (Rhamnaceae), but in other areas there are dominant stands of other endemics such as Nothofagus aequilateralis (Nothofagaceae), while in coastal areas the endemic Araucaria columnaris (Araucariaceae) often forms conspicuous stands, a species which is very close to the Norfolk Island endemic Araucaria heterophyllum. The montane forests typically include species of Acmopyle, Agathis, Araucaria (e.g. A. muelleri), Dacrydium, Libocedrus, Metrosideros, Nothofagus (e.g. N. codonandra), Podocarpus, Quintinia and Weinmannia. On lower slopes this may grade into a Gymnostoma deplancheana association, while on the steeper slopes a more open woodland with maquis undergrowth may be present. The dominant shrubs include endemics such as the bright green Arillastrum gummiferum (Myrtaceae) and grey green rosettes of Cocconerion minor (Euphorbiaceae). Species composition of these rainforest if strongly dependent on the soil types with many species confined to ultrabasic soils. Amongst these are many of the BioProvince’s palaeo- endemics including most of the endemic conifers. There are also a number of species confined to calcareous substrates including endemics such as Tieghemopanax crenatus (Araliaceae), Diospyros inexporata (Ebenaceae), Acalypha pulchrespicata (Euphorbiaceae), Cyrtandra mareensis (Gesneriaceae) and Serianthes lifouensis (Mimosaceae). Neocaledonian Woodland Savanna Most of the woodland savanna is dominated by Melaleuca quinquenervia (paperbark tree) known locally as Niaouli Woodland. Other conspicuous species in this habitat include Agathis ovata, Dacrydium araucaroides, Grevillea gillivrayi and Gymnostoma chameocyparis. More typical of the untrabasic soils is the endemic Acacia spirorbis (Fabaceae). Neocaledonian Sclerophyllous Forest Mainly in the dryer western side of Grande Terre, this dense, closed canopy forest is mostly confined to sedimentary substrates such as chert, limestone or sandstone. Compared with the rain forest and maquis, there are fewer endemics and species diversity is much lower than elsewhere. Nevertheless there are still some 59 endemic species and one endemic genus - the magnificent Captaincookia (C. margaretae) of the Rubiaceae, which can have pink blossums covering its entire trunk. Other endemic species include Codiaeum peltatum (Euphorbiaceae), Gardenia urvillei (Rubiaceae) and Pittosporum pancheri (Pittosporaceae). Neocaledonian Maquis Virtually confined to ultrabasic soils, maquis is often characterized by species of Grevillea and Hibbertia (Dilleniaceae) such as the endemic Hibbertia baudovinii. The species composition of associated taxa varies from place to place, but may include Callistomom Copyright © 2010 Peter Martin Rhind pancheri, the endemic Soulamea muelleri (Simaroubaceae) and various species of Gardenia and Myrtopsis. There is also a distinctive upland maquis with a prostate form of Baeckia ericoides often representing the dominant species, and on the southern massif, species such as Greslania montana and Xeronema moorei and confined to upland maquis. On the Massif de Koniambo a somewhat different type of maquis occurs in which Tristania guillainii is the dominant species. Other characteristic species include the endemic Styphelia balansae and S. macrocarpa (Epacridaceae) and species of Guioa (Sapindaceae) such as the endemic Guioa fusca. Further information required. References Balgooy, Van. M. M. J. 1960. Preliminary plant geographical analysis of the Pacific. Blumea, 10: 385-430. Balgooy, Van. M. M. J. 1969. A study of the diversity of island floras. Blumea, 17: 139-178. Campbell, D. G. & Hammond, H. D. 1989. Floristic Inventory of Tropical Countries. The New York Botanical Garden. Compton, R. H. 1917. New Caledonia and the Isle of Pines. The Geographical Journal, 49: 81-106. Gillison, A. M. Tropical Savannas of Australia and Southwest Pacific. In: Ecosystems of the World 13 - Tropical Savannas. Ed. F. Bourliere. Elsevier Scientific Publishing Company. Good, R. 1950. Madagascar and New Caledonia - a problem in plant geography. Blumea, 6: 470-490. Heads, M. 2008. Panbiogeography of New Caledonia, southwest Pacific: basal angiosperms on basement terrains, ultramafic endemics inherited from volcanic island arcs and old taxa endemics to young islands. Journal of Biogeography, 35: 2153-2175. Holloway, J. D. 1979. A survey of the lepidoptera, biogeography and ecology of New Caledonia. W. Junk. The Hague. Jaffré, T., Bouchet, P. & Veillon, J. 1998. Threatened plants of New Caledonia: is the system of protected areas adequate? Biodiversity and Conservation, 7: 109-135. Jaffré, T. & Veillon, J. 1995. Structural and floristic characteristics of a rain forest on schist in New Caledonia: a comparison with an ultramafic rain forest. Bulletin of the Museum of Natural History, Paris 17: 201-226. Krupnick, G. A. & Kress, W. J. 2003. Hotspots and ecoregions: a test of the conservation priorities using taxonomic data. Biodiversity and Conservation, 12: 2237-2253. Ladiges, P. Y. 2008. Synthesizing biotic patterns and geology for New Caledonia (Commentary). Journal of Biogeography, 35: 2151-2152. Copyright © 2010 Peter Martin Rhind Morat, P., Jaffre, T. & Veillon, J. 2001. The flora of New Caledonia’s calcareous substrates. Adansonia, ser 3, 23: 109-127. Moret, P., Veillon, J. M. & MacKee, H. S. 1984. Floristic relationships of New Caledonian rain forest phanerogams. In: Biogeography of the Tropical Pacific (Proceedings of a Symposium). Eds. F. J. Radovsky, P. H. Raven and H. Sohmer. Bishop Museum Special Publication No. 72. Mueller-Dombois, D. & Fosberg, F. R. 1998. Vegetation of the Tropical Pacific Islands. Springer. Proctor, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspective in Plant Ecology, Evolution and Systematics, 6: 105-124. Read, J. & Hope, G. S. 1996. Ecology of Nothofagus Forests of New Guinea and New Caledonia. In: The Ecology and Biogeography of Nothofagus Forest. Eds. T. T. Veblen, R. S. Hill and J. Read. Yale University Press. Setoguchi, H., Ohba, H. & Tobe, H. 1998. Evolution in Crossostylis (Rhizophoraceae) on the South Pacific Islands. In: Evolution and Speciation of Island Plants. Eds. T. S. Stuessy and M. Ono. Cambridge University Press. Schmid, M. 1978. The Melanesian forest ecosystems (New Caledonia, New Hebrides, Fiji Islands and Solomon Islands). In: Tropical forest ecosystems. Natural Resources Research Vol. XIV. UNESCO Schmid, M. 1989. The forests in the tropical Pacific archipelagoes. In: Ecosystems of the World 14B - Tropical Rain Forest Ecosystems. Elsevier. Sohmer, S. H. 1990. Elements of Pacific phytodiversity. In: The Plant Diversity of Malesia. Proceedings of the Flora Malesiana Symposium commemorating Professor Dr. C. G. G. J. van Steenis Leiden, August 1989. Eds. P. Baas, K. Kalkman and R. Geesink. Kluwer Academic Publishers. Specht, R. L. 1979. “Maquis” vegetation of New Caledonia. In: Ecoystems of the World (9A) – heathlands and related shrublands: descriptive studies. Ed. R. L. Specht. Elsevier Science. Thorne, R. F. 1965. Floristic relationships of New Caledonia. University of Iowa Studies in Natural History, 20: 1-14. Ungricht, S., Rasplus, J. & Kjellberg, F. 2005. Extinction threat evaluation of endemic fig trees of New Caledonia: priority assessment for taxonomy and conservation with herbarium collections. Biodiversity and Conservation, 14: 205-232. Copyright © 2010 Peter Martin Rhind .
Recommended publications
  • Studies on Lophocoleaceae XXI. Otoscyphus J.J. Engel, Bardat Et Thouvenot, a New Liverwort Genus from New Caledonia with an Unusual Morphology
    Cryptogamie, Bryologie, 2012, 33 (3): 279-289 © 2012 Adac. Tous droits réservés Studies on Lophocoleaceae XXI. Otoscyphus J.J. Engel, Bardat et Thouvenot, a new liverwort genus from New Caledonia with an unusual morphology John J. ENGEL a*, Jacques BARDAT b & Louis THOUVENOT c a Bryology, Head of Cryptogams, Department of Botany The Field Museum 1400 South Lake Shore Drive Chicago, IL 60605-2496 U.S.A. b Museum National d’Histoire naturelle, Département Systématique et Évolution UMR 7205, CP39, 57 rue Cuvier, 75231 Paris cedex 05, France c 11, rue Saint-Léon, 66000 Perpignan, France (Received 15 January 2012, accepted 15 February 2012) Abstract – A new genus of liverwort in the family Lophocoleaceae is described and illustrated. The genus Octoscyphus presents a suite of original characters for this family. It is placed in the subfamily Lophocoleoideae. It has, in particular, a unique feature among leafy liverworts: The leaves have a very broad foliar base forming a longitudinally inserted pocket. The feature involves several characters. This genus is represented by a single species, Otoscyphus crassicaulis comb. nov., from New Caledonia. The species is montane and occurs on the dead, rotted wood. Marchantiophyta / Jungermanniales / Australasia / bryophytes / liverworts / new genus / Otoscyphus / Pacific region Résumé – Un nouveau genre d’hépatique de la famille des Lophocoleaceae est décrit et illustré. Le genre Otoscyphus présente un ensemble de caractères originaux pour cette famille. Il est placé dans la sous-famille des Lophocoleoideae. Caractère unique chez les hépatiques à feuilles, ses feuilles présentent une base très large formant une poche insérée longitudinalement. Ce genre est représenté par une seule espèce, Otoscyphus crassicaulis comb.
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Acacia Spirorbis Subsp. Solandri (Benth.) Pedley
    WATTLE Acacias of Australia Acacia spirorbis subsp. solandri (Benth.) Pedley Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com See illustration. Acacia spirorbis subsp. solandri occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Family Fabaceae Distribution Occurs on the continental islands off the Qld coast and the immediate mainland between Townsville and Mackay, extending further S on the islands to Rat Is. near Rockhampton, and inland in the Hillborough Natl Park, SW of Townsville. It occurs on margins of rainforest and on drier sites in eucalypt woodland and open forest. Also recorded from the S coast of New Guinea, fide L.Pedley, Contr. Queensland Herb. 18: 20 (1975). The typical subspecies (which includes A. solandri subsp. kajewskii Pedley) occurs on islands of the Pacific, e.g. New Hebrides, New Caledonia and Loyality Is., fide L.Pedley, Contr. Queensland Herb. 18: 20–21 (1975). Description Tree to c. 12 m high; young plants possibly pubescent. Branchlets slender, glabrous. Phyllodes falcately recurved, 9–17 cm long, 6–16 mm wide, dark green, glabrous, with 2 main longitudinal nerves more prominent than the rest and sometimes concurrent with each other near base; minor nerves numerous, 3–5 (–6) per mm, subdistant, 0.1–0.3 mm apart, sparingly anastomosing; pulvinus 2–4 mm long, dark-coloured. Inflorescences simple or rudimentary racemes with axes c. 0.5 mm long; peduncles 2 per axil, 5–10 mm long, glabrous; spikes 3–8 cm long, interrupted, creamy. Flowers 5-merous; sepals united with broadly triangular lobes at apices, glabrous; petals strongly reflexed at anthesis; ovary densely hairy.
    [Show full text]
  • Reproductive Traits of Tropical Rain-Forest Trees in New Caledonia, Journal of Tropical Ecology, 2003; 19 (4):351-365
    PUBLISHED VERSION Carpenter, Raymond John; Read, Jennifer; Jaffre, Tanguy. Reproductive traits of tropical rain-forest trees in New Caledonia, Journal of Tropical Ecology, 2003; 19 (4):351-365. Copyright © 2003 Cambridge University Press PERMISSIONS http://journals.cambridge.org/action/stream?pageId=4088&level=2#4408 The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central, no sooner than one year after first publication of the paper in the journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the journal at Cambridge Journals Online. Inclusion of this definitive version after one year in Institutional Repositories outside of the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be unreasonably withheld). 2nd May 2011 http://hdl.handle.net/2440/48082 Journal of Tropical Ecology (2003) 19:351–365. Copyright 2003 Cambridge University Press DOI:10.1017/S0266467403003407 Printed in the United Kingdom Reproductive traits of tropical rain-forest trees in New Caledonia Raymond J. Carpenter*1, Jennifer Read* and Tanguy Jaffre´ † *School of Biological Sciences, P.O.
    [Show full text]
  • Section 8-Maggie-Final AM
    KEY TO GROUP 8 Shrubs or trees usually more than 1.5 m tall. A. flower B. phyllode and C. leaf D. leaf E. leaf margins F. leaf margins spike pod lobed dissected crenate serrate NOTE: The following trees and shrubs, which are deciduous when flowering, will not come out in this key unless you can find a leaf. There are usually some old ones on the ground or even a few hanging on the tree. These plants are: Brachychiton (Group 8.G), Cochlospermum (Group 8.G), Cordia (Group 8.K), Gyrocarpos (Group 8.G), Sterculia (Group 8.O), Terminalia (Group 8.M), Turraea (Group 8.R), and the mangrove, Xylocarpus (Group 1.H). 1 Leaves with oil glands, readily visible with a hand lens if not to the naked eye, aromatic when crushed, eucalypt or citrus smell. (Chiefly eucalypts, paperbarks, bottlebrushes and similar) go to 2 1* Leaves lacking easily seen oil glands, if aromatic when crushed, then smell not of an eucalypt; citrus or even an apple smell go to 5 Oil glands/dots as seen with a good hand lens 2 Trees; petals fused to form an operculum or cap, stamens numerous and free (eucalpyts) go to 3 2* Shrubs or trees, petals not fused to form an operculum or cap, stamens if numerous then usually united into bundles or stamens are fewer than 10 (Myrtaceae-Rutaceae) go to 4 3 Bark smooth throughout but occasionally some rough fibrous or persistent bark at base go to Group 8.A 3* Persistent, fibrous bark for at least 2-3 m or usually more from the base go to Group 8.B 4 Flowers clustered into spikes (see sketch A), old capsules usually remain on the old wood
    [Show full text]
  • Types of Vegetation Occuring on Santo
    in BOUCHET P., LE GUYADER H. & PASCAL O. (Eds), The Natural History of Santo. MNHN, Paris; IRD, Marseille; PNI, Paris. 572 p. (Patrimoines naturels; 70). Types of Vegetation Occurring on Santo Jérôme Munzinger, Porter P. Lowry II & Jean-Noël Labat The Santo 2006 expedition was Table 5: Vegetation types in Vanuatu proposed by Mueller- designed to carry out detailed explo- Dombois and Fosberg. ration of the botanical diversity 1. Lowland rain forest present on the island. A wide diver- sity of vegetation types were there- a. High-stature forests on old volcanic ash fore studied, covering the full range b. Medium-stature forest heavily covered with lianas extending from what can be regarded c. Complex forest scrub densely covered with lianas as "extremes" on a scale from natu- d. Alluvial and floodplain forests ral, nearly undisturbed areas to those e. Agathis-Calophyllum forest that have been profoundly modified f. Mixed-species forests without gymnosperms and by man. Large areas have been trans- Calophyllum formed by humans — partially or completely — through clearing, fire, 2. Montane cloud forest and related vegetation Principal and other means, in an effort to meet basic needs for food, shelter, fiber, 3. Seasonal forest, scrub and grassland grazing land for livestock, etc., although such a. Semi-deciduous transitions forests habitats exist only because they are created and b. Acacia spirorbis forest maintained by man or by domesticated animals. c. Leucaena thicket, savanna and grassland At the other extreme, Santo’s vegetation includes nearly pristine formations that result from the 4. Vegetation on new volcanic surfaces natural processes of evolution and succession and are self-maintaining, provided they are not subject 5.
    [Show full text]
  • Acacia Spirorbis Subsp. Solandri (Benth.) Pedley Family: Fabaceae Pedley, L
    Australian Tropical Rainforest Plants - Online edition Acacia spirorbis subsp. solandri (Benth.) Pedley Family: Fabaceae Pedley, L. (1990) Austrobaileya 3(2): 216. Common name: Wattle Stem Dead bark layered. Inner and outer blazes very fibrous. Leaves Leaves phyllodineous. Leaf blades about 9-17 x 0.6-16 cm. Veins longitudinal, parallel, not Leaves and inflorescences. © R.L. anastomosing, generally 2-3 more prominent than the rest. A small gland normally visible on the Barrett upper side of the leaf blade-petiole junction. Flowers Spikes about 3-8 cm long, on glabrous peduncles about 5-10 mm long, in axillary pairs. Calyx cylindrical, glabrous, about 0.8-1 mm long, apex sinuate. Corolla about 1.8-2.5 mm long, glabrous, lobes strongly reflexed, about as long as the tube. Stamens about 2.5-3.5 mm long. Ovary densely pubescent. Fruit Pod +/- flat, sometimes raised over the seeds, coiled, up to 10 x 0.3-0.5 cm. Seeds (colour unknown) longitudinally or slightly obliquely oriented in the pod, about 3.5-5 x 2.5-3.5 mm. Funicle (colour unknown) folded many times beneath the seed to form an aril-like structure nearly as long as Scale bar 10mm. © CSIRO the seed. Seedlings Features not available. Distribution and Ecology Endemic to Queensland, occurs in the southern extremity of NEQ (near Townsville) and CEQ. Altitudinal range from sea level to 600 m. Grows in monsoon forest, dry rain forest and beach forest. A. spirorbis ssp. spirorbis occurs in Vanuatu and New Caledonia. Synonyms Racosperma spirorbe subsp. solandri (Benth.) Pedley, Austrobaileya 2(3): 355(1984).
    [Show full text]
  • Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
    Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia
    Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia. Maïa Berman, Alan N Andersen, Christelle Hély, Cedric Gaucherel To cite this version: Maïa Berman, Alan N Andersen, Christelle Hély, Cedric Gaucherel. Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia.. PLoS ONE, Public Library of Science, 2013, 8 (6), pp.e67245. 10.1371/journal.pone.0067245. hal- 01190477 HAL Id: hal-01190477 https://hal.archives-ouvertes.fr/hal-01190477 Submitted on 1 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia Maı¨a Berman1,2,3*, Alan N. Andersen1,2, Christelle He´ly4,Ce´dric Gaucherel5 1 Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Winnellie, Northern Territory, Australia, 2 Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Potentialites Microbiologiques Des Sols Rhizospheriques De Cinq Especes Vegetales De L'ecosysteme Minier De Mandena Fort Dauph
    . FACULTE DES SCIENCES DOMAINE : SCIENCES ET TECHNOLOGIES MENTION BIOCHIMIE FONDAMENTALE ET APPLIQUEE ******************************* MEMOIRE POUR L’OBTENTION DU DIPLOME DE MASTER PARCOURS BIOTECHNOLOGIES POTENTIALITES MICROBIOLOGIQUES DES SOLS RHIZOSPHERIQUES DE CINQ ESPECES VEGETALES DE L’ECOSYSTEME MINIER DE MANDENA FORT DAUPHIN (Mimosa latispinosa, Leptolaena pauciflora, Aphloia theiformis, Hymenaea verrucosa, Psorospermum revolutum) Présenté par : RAKOTOMALALA Rijanirina Maître ès Sciences Soutenu publiquement le 08 Janvier 2021 devant le jury composé de : Président : Professeur RAHERIMANDIMBY Marson Encadreurs : Professeur RAMANANKIERANA Heriniaina Docteur BAOHANTA Rondro Harinisainana Examinateurs : Professeur TSIRINIRINDRAVO Herisetra Lalaina Docteur RANDRIANIERENANA Ando Lalaniaina « Tout ce qui doit arriver arrivera, quels que soient vos efforts pour l’éviter. Tout ce qui ne doit pas arriver n’arrivera pas, quels que soient vos efforts pour l’obtenir. » Ramana Maharshi « Ary fantatsika fa ny zavatra rehetra dia miara-miasa hahasoa izay tia an'Andriamanitra, dia izay voantso araka ny fikasany rahateo ». Romana 8 :28 Remerciement Avant toute chose, nous tenons à remercier Dieu de nous avoir donné le courage, la force, la santé ainsi que la volonté afin de parvenir à l’achèvement de ce mémoire. Le présent travail est le fruit d’une collaboration étroite entre le Laboratoire de Biotechnologie-Microbiologie de la Mention Biochimie Fondamentale et Appliquée de la Faculté des Sciences de l’Université d’Antananarivo et le Laboratoire
    [Show full text]
  • Mackay Whitsunday, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]