Vanuata Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Vanuata Vegetation Plant Formations in the Vanuatu BioProvince Peter Martin Rhind Vanuatu Mixed Lowland Rain Forest Up to about 600 m altitude lowland rain forest is the natural vegetation on the southeastern, windward sides of all Vanuatu islands. Important trees are Antiaris toxicaria, Castanospermum australe, Intsia bijuga and Kleinhovia hospitat. Endemic species include Alangium vitense (Cornaceae). On old volcanic ash, rich in plant nutrients, trees can reach more than 30 m in height with large crowns. Typical sub canopy trees include Diospyros acris, Garcinia pancheri and Syzygium species, while endemic small trees include various Veitchia palms, Calophyllum inophyllum (Clusiaceae) and Trilocularia pedicellata (Balanopsidaceae). These forests are best developed on the northern islands of Malakula and Espiritu Santo, and are structurally similar to forests on the Solomon Islands. However, many are in various stages of recovery following disturbance from hurricanes. Vines and epiphytes are numerous and certain areas are covered with lianas. The undergrowth includes various shrubs, and typically there is an herbaceous ground layer comprising genera such as Geophila and Homalomena and ferns like Asplenium, Microsorium and Pteris, but tree ferns are usually absent. Of endemic species, however, many seem to be specific to certain islands or island groups. On Aneityum, for example, there are endemic trees such as Boehmeria anisoneura (Urticaceae), Canarium aneityensis (Burseraceae), Couthovia neo-ebudica (Loganiaceae), Cryptocarya wilsonii (Lauraceae), Cupaniopsis aneityensis (Sapindaceae), Decaspermum neo-ebudicum (Myrtaceae), Dedea neo-ebudica (Saxifragaceae), Dolicholobium aneityense (Rubiaceae), Elaeodendron artense (Celastraceae), Endiandra aneityensis (Lauraceae), Ficus acrorrhyncha (Moraceae), Geissois denhamii (Saxifragaceae), Grewia inmac (Tiliaceae), Guettarda kajewskii (Rubiaceae), Hedycaria neo-ebudica (Monimiaceae), Homalium aneityense (Samydaceae), Ixora aneityensis (Rubiaceae), Kermadecia lutea (Proteaceae), Leucosyke corymbulosa (Urticaceae), Ligustrum beo-ebudicum (Oleaceae), Litsia aneityensis (Lauraceae), Melia azedarach (Meliaceae), Myrtus aneityensis (Myrtaceae), Palaquium neo-ebudicum (Sapotaceae), Pittosporum aneityense (Pittosporaceae), Sideroxylon aneityense (Sapotaceae), Semecarpus tannaensis (Anacardiaceae), Sideroxylon aneityense (Sapotaceae), Syzygium aneityensis (Myrtaceae), Tieghemopanax neo-ebudarum (Araliaceae), Weinmannia macgillivrayi (Cunoniaceae), and the palm Kajewskia aneityensis (Arecaceae). Endemic shrubs in these rain forests include Cyrtandra aneiteensis (Gesneraceae), Elatostema macrophyllum (Urticaceae) and Psychotria aneityensis (Rubiaceae), while other endemics include epiphytes such as the orchid Eria kajewskii (Orchidaceae), the vine Faradaya neo-ebudica (Lamiaceae), and the parasites Loranthus aneityensis (Loranthaceae) and Medinilla neo-ebudica (Melastomaceae). Vanuatu Agathis-Calophyllum Forest Forest dominated by the endemic Agathis obtusa (Araucariaceae)) and Calophyllum neo- ebudicum (Clusiaceae) are confined to the southern islands of Anatom and Erromango, although scattered emergent kauri (Agathis spp) have been reported as occurring in the western mountains of Espiritu Santo, but no Calophyllum. Agathis and species of Podocarpaceae form an ancient floristic element of these forests. The fossil record of Agathis, for example, can be traced back to the Jurassic period and extant species often referred to as ‘living fossils’. In the Jurassic the now extinct Agathis jurassica was widespread, but today the genus is confined to Malaysia, Brunei and Indonesia, New Guinea, Queensland and the eastern Solomons to Vanuatu, New Caledonia, Fiji and New Zealand. Other common trees found in these forests include Acronychia simplicifolis, Copyright © 2010 Peter Martin Rhind Bleasdalia lutea, Canthium cynigerum, Celtis paniculata, Dacrycarpus imbricatus, and the endemic Dysoxylum aneityensis (Meliaceae), Elaeocarpus hortensis (Elaeocarpaceae), Ficus granatus (Moraceae) and Palaquium neo-ebudicum (Sapotaceae). The canopy can reach heights of up to 30 m with emergent Agathis occasionally reaching 35 m. Subcanopy genera include Cryptocarya, Dysoxylum, Ilex, Litsea, Piliocalyx, Polyscias, Schefflera, Syzygium, Weinmannia and others, and there is usually a tall shrub stratum consisting of genera such as Dracaena, Ilex, Myristica and Syzygium. Other endemic trees associated with these forests on Erromango include Aphania neo-ebudica (Sapindaceae), Badusa occidentalis (Rubiaceae), Cupaniopsis neo-ebudensis (Sapindaceae), Dillenia neo-ebudica (Dilleniaceae), Eugenia richii (Myrtaceae), Evodia kayewskii (Rubiaceae), Ficus kajewskii (Moraceae), Homalanthus longipes (Euphorbiaceae), Tapeinopserma netor and Weinmannia kajewskii (Saxifragaceae). There is typically a rich herb layer usually dominated by ferns. Ferns are also well represented among the epiphytes together with orchids, particularly species of Dendrobium. Lianas include Alyxia, Entada, Freycinetia and Hugonia and included among the many vines are the endemic Parsonsia neo-ebudica (Apocynaceae) and Uncaria orientalis (Rubiaceae). Vanuatu Montane Cloud Forest These forests range from about 500-1000 m in altitude and so confined to the highest mountains in Vanuatu such as the southeast slopes of Pico Santo (1704 m) and the eastern side of Tabwemasana (1879 m). On smaller islands such as Anatom they develop at about 300 m. They are all characterized by stunted, gnarled trees covered in bryophytes and filmy ferns. The main tree genera are Ascarina, Geissois, Metrosideros, Quintinia, Syzygium and Weinmannia. Also tree ferns of Cyathea and Dicksonia are locally common together with various other large ferns. The endemic palm Clinostigma harlandii (Arecaceae) may also be present but appears to be confined to the islands of Ambrym, Anatom and Erromango. Many of the tree crowns are covered with epiphytic orchids, particularly species of Dendrobium, and ferns. Astelia (Liliaceae) is another conspicuous epiphyte. Lianas, on the other hand, are less numerous but include the pandanaceous climber Freycinetia. Scattered among the trees are various herbaceous patches with plants such as large leaved Gunnera, the grass Isachne and the sedge Machaerina. Shrubs such as Eurya, Gaultheria, Pipturus and Vaccinium can also be found in these treeless, herbaceous zones. Vanuatu Acacia spirorbis Forest Know locally as gaiac forest this open formation dominated by the phyllodial Acacia spirorbis can be found on various islands including Anatom and Erromango. The trees usually have a low to medium stature growing to a maximum of about 15 m, and typically have wide-branching crowns. Dominant among undergrowth shrubs are Croton, Symplocos and Xylosma. In canopy openings, heliophytic grasses predominate. These include Miscanthus floridulus in moist areas and Heteropogon contortus in the dryer areas. Vanuatu Vegetation of New Volcanic Surfaces On Yasur Volcano on Tanna, the ferns Histiopteris incisa, Nephrolepis hirsutula and Cyathea species are widely but sparsely distributed on lava fields, but a completely different flora occurs on the disturbed cinder cones. Here the dominant species include shrubs such as Melastoma denticulatum, Piper latifolium and Pipturus argenteus, the grasses Imperata cylindrical and Miscanthus floridulus, and the annual herb Emilia sochifolia. Surprisingly orchids have also been recorded in these inhospitable areas including species of Spathoglottis, while on the volcanic ash of Erromango the endemic orchid Trichochilus neo-ebudidus (Orchidaceae) can be found. Copyright © 2010 Peter Martin Rhind Further information required. References Ames, O. 1932. Contribution to the flora of the New Hebrides and Santa Cruz islands. Orchids collected by S. F. Kajewski in 1928 and 1929. Journal of the Arnold Arboretum, 13: 127-144. Balgooy, Van. M. M. J. 1960. Preliminary plant geographical analysis of the Pacific. Blumea, 10: 385-430. Beveridge, A. E. 1975. Kauri forests in the New Hebrides. Philosophical Transactions of the Royal Society, London, B272: 369-383. Braithwaite, A. F. 1975. The phytogeographical relationships and origins of the New Hebrides fern flora. Philosophical Transactions of the Royal Society of London, B272: 293-313. Chew, W. L. 1975. The phanerogamic flora of the New Hebrides and its relationships. Philosophical Transactions of the Royal Society of London, B272: 315-328. Dowe, J. L. & Cabalion, P. 1996. A Taxonomic Account of the Arecaceae in Vanuatu with descriptions of three new species. Australian Systematic Botany, 9: 1-60. Gillison, A. M. Tropical Savannas of Australia and Southwest Pacific. In: Ecosystems of the World 13 - Tropical Savannas. Ed. F. Bourliere. Elsevier Scientific Publishing Company. Balgooy, Van. M. M. J. 1960. Preliminary plant geographical analysis of the Pacific. Blumea, 10: 385-430. Guillaumin, A. 1931. Contribution to the flora of the New Hebrides. Plants collected by S. F. Kajewski in 1928 and 1929. Journal of the Arnold Arboretum, 12: 221-264. Guillaumin, A. 1932. Contribution to the flora of the New Hebrides. Plants collected by S. F. Kajewski in 1928 and 1929. Journal of the Arnold Arboretum, 13: 1-29. Guillaumin, A. 1932. Contribution to the flora of the New Hebrides. Plants collected by S. F. Kajewski in 1928 and 1929. Journal of the Arnold Arboretum, 13: 81-126. Guillaumin, A. 1933. Contribution to the flora of the New Hebrides. Plants collected by S. F. Kajewski in 1928 and 1929. Journal of the Arnold Arboretum,
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • CGGJ Vansteenis
    BIBLIOGRAPHY : ALGAE 3957 X. Bibliography C.G.G.J. van Steenis (continued from page 3864) The entries have been split into five categories: a) Algae — b) Fungi & Lichens — c) Bryophytes — d) Pteridophytes — e) Spermatophytes 8 General subjects. — Books have been marked with an asterisk. a) Algae: ABDUS M & Ulva a SALAM, A. Y.S.A.KHAN, patengansis, new species from Bang- ladesh. Phykos 19 (1980) 129-131, 4 fig. ADEY ,w. H., R.A.TOWNSEND & w„T„ BOYKINS, The crustose coralline algae (Rho- dophyta: Corallinaceae) of the Hawaiian Islands. Smithson„Contr„ Marine Sci. no 15 (1982) 1-74, 47 fig. 10 new) 29 new); to subfamilies and genera (1 and spp. (several key genera; keys to species„ BANDO,T„, S.WATANABE & T„NAKANO, Desmids from soil of paddyfields collect- ed in Java and Sumatra. Tukar-Menukar 1 (1982) 7-23, 4 fig. 85 species listed and annotated; no novelties. *CHRISTIANSON,I.G., M.N.CLAYTON & B.M.ALLENDER (eds.), B.FUHRER (photogr.), Seaweeds of Australia. A.H.& A.W.Reed Pty Ltd., Sydney (1981) 112 pp., 186 col.pl. Magnificent atlas; text only with the phyla; ample captions; some seagrasses included. CORDERO Jr,P.A„ Studies on Philippine marine red algae. Nat.Mus.Philip., Manila (1981) 258 pp., 28 pi., 1 map, 265 fig. Thesis (Kyoto); keys and descriptions of 259 spp„, half of them new to the Philippines; 1 new species. A preliminary study of the ethnobotany of Philippine edible sea- weeds, especially from Ilocos Norte and Cagayan Provinces. Acta Manillana A 21 (31) (1982) 54-79. Chemical analysis; scientific and local names; indication of uses and storage.
    [Show full text]
  • Plant Mobility in the Mesozoic Disseminule Dispersal Strategies Of
    Palaeogeography, Palaeoclimatology, Palaeoecology 515 (2019) 47–69 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants T ⁎ Stephen McLoughlina, , Christian Potta,b a Palaeobiology Department, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden b LWL - Museum für Naturkunde, Westfälisches Landesmuseum mit Planetarium, Sentruper Straße 285, D-48161 Münster, Germany ARTICLE INFO ABSTRACT Keywords: Four upper Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia (the Daohugou, Seed dispersal Talbragar, Jehol, and Koonwarra biotas) offer glimpses into the representation of plant disseminule strategies Zoochory during that phase of Earth history in which flowering plants, birds, mammals, and modern insect faunas began to Anemochory diversify. No seed or foliage species is shared between the Northern and Southern Hemisphere fossil sites and Hydrochory only a few species are shared between the Jurassic and Cretaceous assemblages in the respective regions. Free- Angiosperms sporing plants, including a broad range of bryophytes, are major components of the studied assemblages and Conifers attest to similar moist growth habitats adjacent to all four preservational sites. Both simple unadorned seeds and winged seeds constitute significant proportions of the disseminule diversity in each assemblage. Anemochory, evidenced by the development of seed wings or a pappus, remained a key seed dispersal strategy through the studied interval. Despite the rise of feathered birds and fur-covered mammals, evidence for epizoochory is minimal in the studied assemblages. Those Early Cretaceous seeds or detached reproductive structures bearing spines were probably adapted for anchoring to aquatic debris or to soft lacustrine substrates.
    [Show full text]
  • Framework for Assessing the Susceptibility of Management Areas to Deer Impacts
    Framework for assessing the susceptibility of management areas to deer impacts SCIENCE FOR CONSERVATION 213 D.M. Forsyth, D.A. Coomes, G. Nugent Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright January 2003, New Zealand Department of Conservation ISSN 1173–2946 ISBN 0–478–22347–1 This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Geoff Gregory and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Sources of information 6 2.1 Ecology and impacts of deer: theoretical and empirical models 6 2.2 Diet preferences 6 2.3 Forest types most affected by deer 7 2.4 Guidelines for deer management 8 3. Main findings 9 3.1 Ecology of deer in New Zealand 9 3.2 Mathematical and conceptual models of plant–ungulate interactions 10 3.2.1 Density-dependence of animal populations 10 3.2.2 Annual variation in food availability 11 3.2.3 Annual
    [Show full text]
  • Newsletter No
    Newsletter No. 167 June 2016 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+61)/(0)7 4232 1859 Tel: (+61)/(0) 3 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Leon Perrie John Clarkson Museum of New Zealand Te Papa Tongarewa Queensland Parks and Wildlife Service PO Box 467, Wellington 6011 PO Box 975, Atherton Qld 4883 New Zealand Australia Tel: (+64)/(0) 4 381 7261 Tel: (+61)/(0) 7 4091 8170 Email: [email protected] Mobile: (+61)/(0) 437 732 487 Councillor Email: [email protected] Jennifer Tate Councillor Institute of Fundamental Sciences Mike Bayly Massey University School of Botany Private Bag 11222, Palmerston North 4442 University of Melbourne, Vic. 3010 New Zealand Australia Tel: (+64)/(0) 6 356- 099 ext. 84718 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Matthews Heidi Meudt Advisory Standing Committees Joanne Birch Financial Katharina Schulte Patrick Brownsey Murray Henwood David Cantrill Chair: Dan Murphy, Vice President Bob Hill Grant application closing dates Ad hoc adviser to Committee: Bruce Evans Hansjörg Eichler Research
    [Show full text]
  • Studies on New Guinea Moths. 1. Introduction (Lepidoptera)
    PROC. ENTOMOL. SOC. WASH. 105(4), 2003, pp. 1034-1042 STUDIES ON NEW GUINEA MOTHS. 1. INTRODUCTION (LEPIDOPTERA) SCOTT E. MILLER, VOJTECH NOVOTNY, AND YVES BASSET (SEM) Department of Systematic Biology, National Museum of Natural History, Smith- sonian Institution, Washington, DC 20560-0105, U.S.A. (e-mail: [email protected]. edu); (VN) Institute of Entomology, Czech Academy of Sciences and Biological Faculty, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; (YB) Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Panama Abstract.•This is the first in a series of papers providing taxonomic data in support of ecological and biogeographic studies of moths in New Guinea. The primary study is an extensive inventory of the caterpillar fauna of a lowland rainforest site near Madang, Papua New Guinea, from 1994•2001. The inventory focused on the Lepidoptera com- munity on 71 woody plant species representing 45 genera and 23 families. During the study, 46,457 caterpillars representing 585 species were sampled, with 19,660 caterpillars representing 441 species reared to adults. This introductory contribution is intended to provide background on the project, including descriptions of the study site, sampling methods, and taxonomic methods. Key Words: Malesia, Papua New Guinea, Lepidoptera, biodiversity, rearing, community ecology A very large portion of tropical biodi- 1992 and 1993 (Basset 1996, Basset et al. versity consists of herbivorous insects, and 1996). This paper represents the first in a among them, Lepidoptera are among the series of papers providing taxonomic doc- most amenable to study. To better under- umentation in support of the broader stud- stand the structure and maintenance of trop- ies, and is intended to provide general back- ical biodiversity, we undertook a series of ground, including descriptions of the study related inventories of Lepidoptera in New site, sampling methods, and taxonomic Guinea.
    [Show full text]
  • Global ENVIRONMENT FACILITY INVESTING in OUR PLANET
    GLOBAl ENVIRONMENT FACILITY INVESTING IN OUR PLANET Naoko Ishii CEO and Chairperson August 22, 2016 Dear Council Member, The F AO as the Implementing Agency for the project entitled: Vanuatu: R2R: Integrated Sustainable Land and Coastal Management under the Regional: R2R- Pacific Islands Ridge-to• Reef National Priorities d€" Integrated Water, Land, Forest and Coastal Management to Preserve Biodiversity, Ecosystem Services, Store Carbon, Improve Climate Resilience and Sustain Livelihoods, has submitted the attached proposed project document for CEO endorsement prior to final Agency approval of the project document in accordance with the FAO procedures. The Secretariat has reviewed the project document. It is consistent with the project concept approved by the Council in November 2013 and the proposed project remains consistent with the Instrument and OEF policies and procedures. The attached explanation prepared by the F AO satisfactorily details how Council's comments and those of the STAP have been addressed. We have today posted the proposed project document on the OEF website at www.TheOEF.org for your information. We would welcome any comments you may wish to provide by September 20,2016 before I endorse the project. You may send your comments to [email protected] . If you do not have access to the Web, you may request the local field office ofUNDP or the World Bank to download the document for you. Alternatively, you may request a copy of the document from the Secretariat. If you make such a request, please confirm for us
    [Show full text]
  • DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
    Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time.
    [Show full text]
  • Late Jurassic) Near Gulgong, New South Wales
    DOI: 10.18195/issn.0312-3162.23(1).2006.043-076 Records of the Western Australian Museum 23: 43-76 (2006). The leptolepid fish Cavenderichthys talbragarensis (Woodward, 1895) from the Talbragar Fish Bed (Late Jurassic) near Gulgong, New South Wales 1. B. Bean Dept of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia e-mail: [email protected] Abstract - "Leptolepis" talbragarensis Woodward, 1895, is the most common fish species in the Talbragar Fish Bed near Gulgong, New South Wales. The genus Cavenderichthys Arratia, 1997, has this species as its type. The three species originally proposed by Woodward (1895) for "Leptolepis" are a single species. A detailed comparison of Cavenderichthys talbragarensis with members of the genus Leptolepis, and also with the Late Jurassic forms Tharsis dubius and Leptolepides sprattiformis, indicates that Cavenderichthys talbragarensis is most closely related to Late Jurassic members of the Family Leptolepididae. Analysis of zircons for geochronology showed that the sediment just below the richest fish layer has a youngest component of 151.55 ± 4.27 Ma, corresponding to the Kimmeridgian Stage of the Late Jurassic. Thin sections of the upper prolific fish layer show preservation in tuffaceous sediments, indicating that the fish population was killed by ash falls of felsic tuff that filled the pond they inhabited. INTRODUCTION partly on his own observations, but also on the Fossil fishes were first discovered at Talbragar work of Cavender (1970) who compared about 30 km northeast of Gulgong by Arthur Lowe coregonines and other salmonids with some of the of Wilbertree, NSW in 1889 (Woodward 1895).
    [Show full text]
  • Wollemia Nobilis Wollemi Pine
    MULCH Much Useful Learning Concerning Horticulture VOL.22 No.1, January, 2016 Castlemaine & District Garden Club Inc. Wollemia nobilis Wollemi pine Castlemaine & District Garden Club P.O. Box 758, Castlemaine 3450 [email protected] http://castlemainegardenclub.wordpress.com COMMITTEE Wollemia nobilis President Judy Uren 5470 6462 Vice-president Judy Eastwood 0417 149 251 Secretary Sally Leversha 0437 683 469 [email protected] Treasurer Alan Isaacs 5473 3143 Committee Members Marion Cooke Jan Gower Heather Spicer Sue Spacey Wollemi Pine: Kew Gardens Newsletter Editor Tom Comerford 5470 6230 Wollemia nobilis is a conifer in the [email protected] plant family Araucariaceae. The Webmaster discovery of the Wollemi Pine in Judy Hopley 5472 1156 1994 created great excitement in the [email protected] botanical community due to its resemblance to conifer fossils like Dillwynites and Agathis jurassica. Wollemi Pines are restricted to approximately 40 adult and 200 juvenile Wollemi Pines growing in the Wollemi National Park of New South Wales, 200 km north-west of Sydney. The rare nature of the I really look forward to Monday Wollemi Pine has seen it listed as morning—it gets me back to work endangered. The Wollemi Pine is a tree, which about striking the Wollemi Pine is can grow up to 40 m in the wild with that cuttings taken from the top of a trunk diameter reaching up to one the tree will produce a vertical metre. The bark of the tree is bubbly growing plant, whilst cuttings taken in appearance, chocolate brown from the bottom of the tree will colour in colour.
    [Show full text]
  • Jane & Green—Forest Dieback
    New Zealand Journal of Botany, 1986, Vol. 24: 513-527 513 0028-82 5X/86/2404-0513$2.50/0 © Crown copyright 1986 Etiology of forest dieback areas within the Kaimai Range, North Island, New Zealand G. T. JANE Range. Diebacks are often referred to as diseases N.Z. Forest Service, P.O. Box 25022 or mortality events, with the inference that a path- Christchurch, New Zealand ogen is probably involved. Manion (1981) makes the point that diebacks are the result of a sequence T. G. A. GREEN of often abiotic events and the term disease may Department of Biological Sciences be inappropriate. University of Waikato Mortality in the Kaimai Range is concentrated Private Bag, Hamilton, New Zealand above a critical altitude, which ranges from 550 m to 700 m a.s.l., dependent on locality, and which corresponds with the fog zone (Jane & Green Abstract Severe forest decline exists in upland 1983b). Mortality, therefore, may extend from semi- areas of the Kaimai Range, North Island, New lowland tawa (Beilschmiedia tawa) forests to upland Zealand. Stand structure of major affected vege- silver beech (Nothofagus menziesii) forests (Jane & tation types is described. As stand dominants are Green 1983a) where it may occur on slopes of up well represented in induced serai vegetation, the to 35°. It affects a wide range of forest communities overall species composition of the upland forests (including induced serai communities) and species. is not likely to change following decline. Within the In order to understand further the nature of the decline zone a considerable range of forest damage problem, selected stands are described in detail is found.
    [Show full text]
  • 9 Costion Plant Endemism 133-166 PROOFS
    Micronesica 41(1): 131–164, 2009 Plant Endemism, Rarity, and Threat in Palau, Micronesia: A Geographical Checklist and Preliminary Red List Assessment 1 CRAIG M. COSTION Department of Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide SA 5001 [email protected] ANN HILLMANN KITALONG The Environment, Inc., P.O. Box 1696, Koror, Palau 96940 TARITA HOLM Palau Conservation Society/PALARIS, P.O. Box 1811, Koror, Palau, 96940 Abstract—An official checklist of the endemic plant species of Palau has been long awaited, and is presented here for the first time. For each species a substrate limitation, growth form, and relative abundance is listed. In addition an IUCN red list assessment was conducted using all available data. For over half of the endemic species there is insufficient data to provide a red listing status however an expected minimum number of threatened plants out of the total is inferred. Approximately 15% of Palau’s endemic plants are believed to be only known from the type collection and many more only known from a few collections. These taxa however may now be prioritized and targeted for future inventory and research. The taxonomic robustness of several of these taxa is questionable and it is expected that more endemic species will be lost to synonymy in the future. Previous estimations have significantly over-estimated the rate of plant endemism in Palau (e.g., 194). Here, 130 plants are recognized for Palau, making its level of plant endem- ism comparable to some of its neighboring Micronesian islands to the east, notably Guam and Pohnpei.
    [Show full text]