Effect of Culture Medium on Morphogenic Processes in Vitro in Cinchona Officinalis L

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Culture Medium on Morphogenic Processes in Vitro in Cinchona Officinalis L Effect of culture medium on Rev.morphogenic FCA UNCUYO. processes 2019. 51(1): in vitro 55-68. in CinchonaISSN (en línea) officinalis 1853-8665. L. Effect of culture medium on morphogenic processes in vitro in Cinchona officinalis L. Efecto del medio de cultivo en los procesos morfogénicos in vitro en Cinchona officinalis L. José Antonio Moreno Serrano 1, César Pérez Ruíz 1, Ivonne Moreno Fierro 1, Jorge Moreno Fierro 2 Originales: Recepción: 24/10/2017 - Aceptación: 11/12/2018 Abstract This paper describes the effect of the various plant growth regulators of the culture medium on morphogenic processes in vitro in Cinchona officinalis L, a highly vulnerable species from southern Ecuador. To do this, different concentrations of NaOCl were used in combination with different immersion times for seed disinfection; for seed germination in vitro GA3 was added to the MS basal culture medium in different concentrations, and for morphogenic processes in vitro, different concentrations of auxins and cytokinins were combined. The decrease in the contamination rate was with high concentrations of NaOCl and an increase in the germination rate in 45 days with the addition of 1.0 mg -1 -1 -1 L GA3 to the culture medium the hormonal combination of 0.5 mg L NAA + 2.5 mg L BAP showed a high rate of shoot proliferation and with 1.0 mg L-1 NAA a high number of roots was obtained. In the callogenesis phase, the best results were obtained with 1.0 mg L-1 2,4-D + 0.5 mg L-1 BAP for callus proliferation. In vitro propagation protocols were generated in Cinchona officinalis L, for the preservation and conservation of the species. Keywords plant growth • germination • organogenesis • callogenesis 1 E.T.S.I. de Montes, Forestal y del Medio Natural. E.T.S. Ingenieros Agronómica, Alimentaria y de Biosistemas. Departamento de Biotecnología y Biología Vegetal. UPM. Madrid. España. [email protected] 2 University of Bedfordshire. Vicarage St. Luton. LU1 3JU. United Kingdom. Tomo 51 • N° 1 • 2019 55 J. Moreno Serrano et al. Resumen Este trabajo describe el efecto de los diversos reguladores de crecimiento del medio de cultivo en los procesos morfogénicos in vitro en Cinchona officinalis L, una especie altamente vulnerable del sur de Ecuador. Para ello, se utilizó diferentes concentraciones de NaOCl en combinación con distintos tiempos de inmersión para la desinfección de semillas; para la germinación in vitro de semillas se agregó AG3 al medio de cultivo MS basal en diferentes concentraciones, y para los procesos morfogénicos in vitro se combi- naron diferentes concentraciones de auxinas y citocininas. Se obtuvo la disminución de la tasa de contaminación con altas concentraciones de NaOCl y aumento de la tasa de germi- -1 nación en 45 días con la adición de 1,0 mg L AG3 al medio de cultivo; la combinación hormonal de 0,5 mg L-1 ANA + 2,5 mg L-1 BAP mostró una alta tasa de proliferación de brotes y con 1,0 mg L-1 ANA se logró obtener un alto número de raíces/explante. En la fase de callogénesis, los mejores resultados se obtuvieron con 1,0 mg L-1 2,4-D + 0,5 mg L-1 BAP para proliferación de callo. Se generaron protocolos de propagación in vitro en Cinchona officinalis Palabras L, con clave fines de preservación y conservación de la especie. reguladores del crecimiento • germinación • organogénesis • callogénesis Introduction The cascarilla or Cinchona officinalis L, mental role in the control of morpho- is an endemic tree located in the southern genesis (22). Ecuador, which for its medicinal prop- erties has been overexploited, coming to forest species obtained by in vitro were be listed as a endangered species and is obtainedAlthough in thethe 1960s, first for seedlingssome species of considered a priority species of conser- the micro-propagation procedures are vation and study in Ecuador (19). still under development, mainly due to The in vitro multiplication of plant the tremendous dependence between the species is an alternative for the conser- response of the crop and the genotype (8, vation of this species and arises thanks 14, 17). Species like Cinchona have not to the totipotential capacity of plant cells, been the exception, being used to increase which allows regenerating a whole plant the productivity of alkaloids through the from small portions of tissues, organs in vitro culture of diverse tissues and or plant cells under aseptic conditions whole seedlings (Geerlings et al., 1999; and controlled (13). The morphogenic Hoekstra et al., 1990; Walton et al., 1987); response in vitro is determined by the these works developed within the in vitro interaction of numerous factors: genotype propagation in several species such as of the donor plant, type of explant and the Cinchona have been the basis for the physiological state, chemical composition establishment of massive propagation of the culture medium and physical envi- protocols for reintroduction and rein- ronment of the incubation of all the factors forcement of populations of C. officinalis involved, growing regulators play a funda- in the natural habitat (5). 56 Revista de la Facultad de Ciencias Agrarias Effect of culture medium on morphogenic processes in vitro in Cinchona officinalis L. As the in vitro culture medium is a conservation strategy for threatened species, for allowing the massive multipli- washesfirst disinfection with sterile with water 70 % (5).ethyl Then, alcohol in cation of plants (6) and taking into account groupsfor 1 min, of 50 followed seeds, a bysecond two disinfectionfive-minute that the specimens of C. officinalis are was carried out with sodium hypochlorite sporadic in their natural environment, the (commercial bleach "Ajax Chlorine" rapid loss of viability of the seeds, the recal- citrance in the conservation of the seeds for 5, 10 and 15 min. The culture medium for long periods of time, the scarce natural used5.25%) for 15, sowing 25 and of 50 the % in(v/v) vitro in ofwater, the regeneration, the increasing importance seeds consisted of MS mineral salts (32) due to its pharmacological properties, supplemented with vitamins (1 mg L-1 of among other factors. For this reason, the thiamine and 100 mg L-1 of myo-inositol), present study was carried out in order to generate protocols for in vitro propa- sucrose as a source of 2 % carbohydrates, gation in C. officinalis, analyzing the effect and gibberellic acid (GA3) in three concen- of various plant growing regulators when trationsagar (SIGMA®) (0.0, 0.5 at and 0.6 1.0% as mg a gellingL-1). The agent pH triggering a satisfactory in vitro morpho- was adjusted to 5.8 ± 0.2 with sodium genic response. hydroxide 1N (NaOH) before placing 10 ml parts in 11 x 25 cm glass tubes, then sterilized in an autoclave for 15 minutes Materials and methods at 120 °C and 1.1 kg cm-2. The sowing of 2 seeds/glass tube was established; the Identification and selection of trees seeds were evaluated by direct obser- vation, every 5 days until 45 days after the located in the southern zone of Ecuador, it sharesThe area geographical of ​​influence territories of the study of wasthe Andean, Litoral and Amazon regions; from sowing, the parameters evaluated were: % the extreme north to the south it has a of contaminationShoots proliferation and % of germination. length of 156.8 km and from east to west The caulinar apices and nodal segments 156.6 km including the Cantons of Loja, of in vitro seedlings of 5 cm average length Catamayo and Saraguro, with a total area were selected with 1-2 nodes. The culture of 10,793 km2. The trees of C. officinalis medium used was similar to the seed germination way, supplemented by the of morphological aspects of the spec- combination of plant growth regulators in were identified based on the description different concentrations, NAA (naphthale- of the branches along the stem, height of neacetic acid) 0.5 and 1.5 mg L-1 and BAP theimens: shaft, stem DBH form, (diameter filotaxical at breast distribution height) (6-benzyl-aminopurine) 2.5, 3.0 and 3.5 and plant health of the tree. mg L-1. The pH was adjusted to 5.8 ± 0.2 with sodium hydroxide 1N (NaOH) before In vitro's seed germination placing 30 ml parts in glass vials (Gerber The seeds of C. officinalis were selected type) of 10 x 5.3 cm, then sterilized in considering characteristics such as: shape, autoclave for 15 minutes at 120 ºC and size, color, physiological maturity and 1.1 kg cm-2. Two explants/vial were estab- good plant health conditions. In aseptic lished; 3 sowings were made at constant conditions, the seeds were subjected to a intervals of 30 days. Tomo 51 • N° 1 • 2019 57 J. Moreno Serrano et al. The explants were evaluated, every 5 3.0 mg L-1) and BAP at a concentration days until 90 days, the parameters eval- of 0.5 mg L-1. The pH was adjusted to 5.8 uated were: number of shoots, shoots ± 0.2 with NaOH at 1N, then sterilized in length, number of nodes and number of an autoclave for 15 minutes at 120 °C and leaves per explant 1.1 kg cm-2. Two explants/vial were estab- lished; 3 sowings were made at constant Rhizogenesis intervals of 30 days. The explants were The nodal and apical segments of evaluated, every 5 days up to 90 days, 5 cm of average length with 1-2 nodes were selected and planted in a culture formation. medium consisting of MS mineral salts, the parameters evaluated were: % callus supplemented separately with three Experimental design and statistical types of auxins: NAA, IAA (indoleacetic analysis acid) and IBA (indolbutyric acid) in 3 To analyze the conditions of the trial different concentrations 0.1, 0.5 and 1.0 in the phase of disinfection of seeds, a mg L-1, without presence of cytokine to completely randomized design (DCA) stimulate rooting.
Recommended publications
  • Plant Systematics Economic Botany and Ethnobotany
    CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic.
    [Show full text]
  • 3 Plants for Chemotherapy of Neoplastic Diseases
    3 Plants for Chemotherapy of Neoplastic Diseases GENERAL CONCEPT Each year in the United States more than 1 million people are diagnosed with cancer, and about 500,000 people die from the disease. For the most part, the reason that cancer is a fatal disease is that cancer cells can invade through, and metastasize to, distant organs in the body. The hallmarks of malignant neoplastic tissue are unregulated cell proliferation, invasiveness, and metastasis to distant sites in the body. Surgery and radiotherapy can eradicate localized tumors but may fail because the cancer may have metastasized to other areas of the body; chemotherapy, if used properly, may control or eliminate metastasis. The array of drugs used for the treatment of cancer includes antimetabolites (methotrexate [Trexall®]), fluoouracil (Efudex®), mercaptopurine (Puri-Nethol®), cytarabine (Cytosar®), covalent DNA-binding drugs (nitrogen mustards, alkylating agents), noncovalent binding drugs (anthracyclines), antiestrogens, and inhibitors of chromatin function. Examples of inhibitors of chromatin function derived from flowering plants (Fig. 80) are etoposide (lignan) and alkaloids camptothecin, Vinca alkaloids, and 7 epitaxol. The rhi- zome of Podophyllum peltatum L. (May apple, Berberidaceae) has been used to remove warts and to relieve the bowels from costiveness since very early times. It contains podophyllo- toxin, a cytotoxic lignan from which etoposide (Vepesid®), which is used to treat lung cancer, lymphomas, and leukemias on account of its ability to inhibit the activity of From: Ethnopharmacology of Medicinal Plants: Asia and the Pacific Edited by: C. Wiart © Humana Press Inc., Totowa, NJ 155 156 ETHNOPHARMACOLOGY OF MEDICINAL PLANTS: ASIA AND THE PACIFIC topoisomerase, has been semisynthetically developed Attempts to verify the reputed anti- diabetic property of Catharanthus roseus G.
    [Show full text]
  • Swietenia Febrifuga and the Cinchona Substitutes
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kent Academic Repository Medical History, 2010, 54: 75–94 Empire and Alternatives: Swietenia febrifuga and the Cinchona Substitutes PRATIK CHAKRABARTI * Introduction This paper focuses on a cinchona substitute, the Swietenia febrifuga (also known as Soymida febrifuga1), whose medical virtues for treating intermittent fevers were discov- ered in India around 1791 by William Roxburgh, the English East India Company (EEIC) surgeon in charge of the Company’s botanical garden in Samulcottah (north of Chennai or Madras). The bark was subsequently subjected to several experiments in three main cities, Samulcottah, Madras (the EEIC headquarters on the east coast of India) and Tranquebar (the Danish base on the same coast). The research and promotion of the bark were carried out by Roxburgh, other surgeons, missionaries and also the EEIC’s commercial agents. One reason for such an interest in the bark was the commercial incentive to find local alternatives to cinchona. Monopolies of trade required availability and cultivability of similar species of commercial commodities within areas of control. Another was scien- tific. The bark promised a cure for a major disease for Europeans in the colonies and the search for a substitute had become a global scientific obsession. For botanists like Roxburgh, who were based in India, the discovery of a cinchona substitute was one of the few ways of achieving international recognition. Moreover, the scientific ambiguity of the most suitable species of cinchona prompted the trial of many alternatives in differ- ent regions. By focusing on the identification and scientific analyses of Swietenia and other similar substitutes, both in India and in England, this paper first investigates the trajectories of the search for medical alternatives in the empire through the burgeoning networks of trade and natural history.
    [Show full text]
  • The Politics of Knowledge in Spain's Royal Monopoly Of
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Empire’s Experts: The Politics of Knowledge in Spain’s Royal Monopoly of Quina (1751-1808) A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew James Crawford Committee in charge: Professor John A. Marino, Co-Chair Professor Naomi Oreskes, Co-Chair Professor Paula De Vos Professor Marcel Henaff Professor Christine Hunefeldt Professor Robert S. Westman 2009 © Matthew James Crawford, 2009 All rights reserved. The Dissertation of Matthew James Crawford is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Co-Chair University of California, San Diego 2009 iii TABLE OF CONTENTS Signature Page ….……………………………………………………………………………iii Table of Contents …………………………………………………………………………….iv List of Illustrations and Tables ….……………………………………………………………v Acknowledgements ….……………………………………………………………………….vi Vita …………………………………………………………………………………………….x Abstract……………………………………………………………………………………….xiii Introduction: Empire, Experts, and the Estanco de Quina in the Spanish Atlantic World ….…………………………………………………1 PART I: THE RULE OF THE LOCAL ...…………………………………………………...39 Chapter 1: The “Necessary and Pious” Destiny of Quina: The Culture of Knowledge Production in the Spanish Empire (1751-1768) …………..40 Chapter 2: Imperial Science Inaction: Cooperation and Contention in the Estanco de Quina (c.1773) ...……………………………………………..99 Chapter 3: Not Expertise but “Vain Science:” South American Perspectives
    [Show full text]
  • Classification of Plants
    CLASSIFICATION OF PLANTS Bonnie Okonek Linda Morganstein, editor Medicinal plants sold in Asuncion, Paraguay,in a plant market. Photo by Steven R. King, 1996. INTRODUCTION: WHAT'S IN A NAME? "A rose is a rose," it has been said. And most of us know a rose when we see one, as we know the African marigolds we plant beside the potatoes and beans in our gardens, and the maples, elms, cedars, and pines that shade our backyards and line our streets. We usually call these plants by their common names. But if we wanted to know more about the cedar tree in our front yard, we would find that "cedar" may refer to an eastern red cedar, an incense cedar, a western red cedar, an Atlantic white cedar, a Spanish cedar, a banak cedar, or the biblical cedar of Lebanon. In fact, we would find that cedars are found in three separate plant families. Later, after discovering that our "African" marigolds are in fact from Mexico and our "Spanish" cedar originated in the West Indies, we would realize how misleading the common names of plants can be. The same plant can have many different common names. The Euro- pean white lily has at least 245, while the marsh marigold has at least 280. Clearly, if we use only the common name of a plant, we cannot be sure of understanding very much about that plant. It is for this reason that the scientific community prefers to use a more precise way of naming, or classification. Scientific classification, how- ever, is more than just naming: it is a key to understanding.
    [Show full text]
  • (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Floral Morphology and Development in Houstonia Procumbens (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FLORAL MORPHOLOGY AND DEVELOPMENT IN HOUSTONIA PROCUMBENS (RUBIACEAE), A UNIQUELY DISTYLOUS, CLEISTOGAMOUS SPECIES By ERIC JONES A dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2012 Eric Jones defended this dissertation on June 11, 2012. The members of the supervisory committee were: Austin Mast Professor Directing Dissertation Matthew Day University Representative Hank W. Bass Committee Member Wu-Min Deng Committee Member Alice A. Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I hereby dedicate this work and the effort it represents to my parents Leroy E. Jones and Helen M. Jones for their love and support throughout my entire life. I have had the pleasure of working with my father as a collaborator on this project and his support and help have been invaluable in that regard. Unfortunately my mother did not live to see me accomplish this goal and I can only hope that somehow she knows how grateful I am for all she’s done. iii ACKNOWLEDGEMENTS I would like to acknowledge the members of my committee for their guidance and support, in particular Austin Mast for his patience and dedication to my success in this endeavor, Hank W.
    [Show full text]
  • NATURAL ANTHRAQUINONEFROM the BARK of Cinchona Officinalis L
    Vol. 12 | No. 2 |519 - 522| April - June | 2019 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in NATURAL ANTHRAQUINONEFROM THE BARK OF Cinchona officinalis L. Muhamad Insanu*, Syaikhul Aziz, Irda Fidrianny, Rika Hartati, Elfahmi, Sukrasno and Komar Ruslan Wirasutisna 1Pharmaceutical Biology Research Group, School of Pharmacy, InstitutTeknologi Bandung, Jl Ganesha no 10, Bandung 40132, West Java, Indonesia *E-mail:[email protected] ABSTRACT Cinchona officinalis is known as the source of alkaloid compounds. Almost 7-12 % of alkaloids were contained in its bark. Not many studies reported other chemical compounds in it. This research aimed to isolate non-alkaloid compounds in the C. officinalis bark. It was extracted by maceration using n-hexane, ethyl acetate, and ethanol. The alkaloidal fraction was separated from ethylacetate extract based on acid-base reaction. The fractions were continued to the next step of fractionations using vacuum liquid chromatography (VLC) and radial chromatography to yield compound 1. Characterizations of compound 1 were done by spectroscopic methods (UV, IR, ESI-MS, NMR ( 1H-, 13 C-, HSQC, and HMBC)).The maximum wavelengths of compound 1 were 278 and 430 nm. 1H- dan 13C-NMR data showed that compound 1 consisted of ten hydrogens and fifteen carbons. ESI-MS showed that the molecular weight was 285.96. It was predicted as 1,3,8-trihydroxy-2-methoxy-9,10-anthraquinone. It was firstly isolated from the ethyl acetate extract of C.officinalis bark. Keywords: Anthraquinone, Cinchona officinalis , Isolation. © RAS ĀYAN. All rights reserved INTRODUCTION Cinchona , locally familiar as kina, related to the Rubiaceae family.
    [Show full text]
  • Pharmacognosy of Cinchona
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 Pharmacognosy of cinchona Vishal Prajapati, Pyiush Yadav, Ajeet Kumar Kannaujiya, Ravikant Vishwkarma, Akshay Pratap Yadav Department of pharmacy, Prasad Institute of Technology, Jaunpur (UP) , India ABSTRACT The near about 350,000 species of plants are found in the earth and these plants have the great medicinal value. The plant of Cinchona is also known as Jesuit’s bark, Peruvian bark and cinchona bark which is belong from the family of Rubiaceae. It produces the yellowish to green colored in short ruptur to outer surface and which is inner surface is yellow, brown, deep reddish to brown colored, different- 2 species inner surface of color is different.The cinchona bark are the consist of 30 types of alkaloids, which belong to quinoline groupbut mainly quinidine , quinine, cinchonina and cinchonidine are the play the vital role in medicinal field . Quinine are mainly used to treatment of malaria and other alkaloids are producing the various medicinal properties such as analgesic, antipyretic, protoplasmic, cardiac arrhythmia, dyspepsia ,gastric catarrh and cardiac depressant . KEYWORDS Introduction , Biological source, Geographical source, Botanical classification, Organoleptic property, Microscopic property, Cultivation and collection, Chemical consitituents, Pharmaceutical uses INTRODUCTION The cinchona is a larger shrub or small tree is domestic or born to South America. Cinchona bark is also known as Peruvian bark or Jesuit’s bark , it is famous his medicinal
    [Show full text]
  • China Officinalis (Cinchona Officinalis)
    China Officinalis (Cinchona Officinalis) Introduction: Debility from exhausting discharges, from loss of vital fluids, together with a nervous erethism, calls for this remedy. Periodicity is most marked. Sensitive to draughts. Seldom indicated in the earlier stages of acute disease. Chronic gout. Chronic suppurativepyelitis. Post operative gas pains, not relief from passing it. Scientific Name: Cinchona officinalis Synonyms: Cascarilla officinalis; Cinchona academica; Cinchona chahuarguera; Cinchona coccinea; Cinchona colorata; Cinchona condaminea; Cinchona crispa; Cinchona lanceolata; Cinchona lancifolia var. lanceolata; Cinchona legitima; Cinchona lucumifolia var. stupea; Cinchona macrocalyx; Cinchona obtusifolia; Cinchona palton; Cinchona peruviana; Cinchona suberosa; Cinchona succirubra; Cinchona uritusinga; Cinchona violacea; Cinchona weddelliana; Hindsia subandina; Quinquina officinalis; Quinquina palton; Quinine; Red cinchona; Cinchona bark; Jesuit’s bark; Loxa bark; Jesuit’s powder; Countess powder; Peruvian bark; Hindi: Kunain ka Pair; Spanish: Quina; Cascarilla; Cargua cargua; Corteza coja; French: Quin- quina; German: Chinarinde. Source: The main source of Cinchona officinalis is vegetable kingdom. It is a South American tree in the Rubiaceae family. It is native to wet montane forests in Colombia, Ecuador, Peru and Bolivia, between 1600–2700 meters above sea level. It is a shrub or slender tree, 7 to 10 meter high, rough, brown, yellow within, with black and whitish marking on the rugose bark and branchlets covered in minute hairs. Stipules lanceolate or oblong, acute or obtuse, glabrous. Leaves lanceolate to elliptic or ovate, usually about 10 cm. long and 3.5–4 cm. wide; acute, acuminate, or obtuse tip; base rounded to attenuate; coriaceous, glabrous above and often lustrous; glabrous beneath or puberulent or short-pilose, especially on the veins.
    [Show full text]
  • BIO-JIM-SIL-2019.Pdf (10.28Mb)
    UNIVERSIDAD NACIONAL DE PIURA Facultad de Ciencias Escuela Profesional de Ciencias Biológicas TESIS ESPECIES DEL GÉNERO Cinchona EN EL ÁREA DE CONSERVACIÓN PRIVADA HUARICANCHA, DISTRITO DE SÓNDOR- HUANCABAMBA-PIURA Presentada por: Br. Treyshi Jesmin Jiménez Silva PARA OPTAR EL TÍTULO PROFESIONAL DE BIÓLOGO Línea de investigación: Biodiversidad y mejoramiento genético Sub-línea: Biodiversidad y ecología Piura, Perú 2019 1 UNIVERSIDAD NACIONAL DE PIURA Facultad de Ciencias Escuela Profesional de Ciencias Biológicas TESIS ESPECIES DEL GÉNERO Cinchona EN EL ÁREA DE CONSERVACIÓN PRIVADA HUARICANCHA, DISTRITO DE SÓNDOR- HUANCABAMBA-PIURA Línea de investigación: Biodiversidad y mejoramiento genético 2 DECLARACIÓN JURADA DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN Yo, Treyshi Jesmin Jiménez Silva, identificada con DNI-N° 48721072, Bachiller de la Escuela Profesional de Ciencias Biológicas de Facultad de Ciencias y domiciliado en AV. Ricardo Palma N°102 Sánchez Cerro, del Distrito de Sullana, Provincia de Sullana, Departamento de Piura, Celular 945961726, Email [email protected]. DECLARO BAJO JURAMENTO: que la tesis que presento es original e inédita, no siendo copia parcial ni total de una tesis desarrollada, y/o realizada en el Perú o en el Extranjero, en caso contrario de resultar falsa la información que proporciono, me sujeto a los alcances de lo establecido en el Art. Nº 411, del código Penal concordante con el Art. 32º de la Ley Nº 27444, y Ley del Procedimiento Administrativo General y las Normas Legales de Protección a los Derechos de Autor. En fe de lo cual firmo la presente. Piura, octubre del 2019 Artículo 411.- El que, en un procedimiento administrativo, hace una falsa declaración en relación a hechos o circunstancias que le corresponde probar, violando la presunción de veracidad establecida por ley, será reprimido con pena privativa de libertad no menor de uno ni mayor de cuatro años.
    [Show full text]
  • Ethnopharmacology of Medicinal Plants Used in North Kordofan (Western Sudan)
    From: http://www.ethnoleaflets.com/leaflets/sudan.htm Reference Prelude : HE 12 Ethnobotanical Leaflets 13: 89-97. 2009. Ethnopharmacology of Medicinal Plants used in North Kordofan (Western Sudan) Hatil Hashim EL-Kamali Department of Botany, Faculty of Science & Technology, Omdurman Islamic Universitym P.O Box # 382, Omdurman Issued 04 January 2009 Abstract Urban and rural people of North Kordofan (Western Sudan) inherited a rich traditional medicinal knowledge. The preservation and documentation of this knowledge is a matter of prime importance. This will not only provide recognition of this knowledge but will also help in conservation of such gradually vanishing endangered semi/arid plant species. The present paper provide ethnopharmacological information of 48 taxa distributed into 26 families. For each plant species listed, the botanical name, family, vernacular name, part used, uses/ailments treated, preparations/administrations, use (%) and locality are given. Among the major findings: Acacia nilotica ssp. nilotica as hypertensive; Balanites aegyptiaca for diabetes; Ceiba pentandra for relieve toothache; Geigeria alata for diabetes, cough, intestinal complaints and as antispasmodic; Guiera senegalensis for jaundice; Hibiscus sabdariffa in cases of hematuria and Justacia flava smeared on gingiva in cases of teeth pain. Keywords : Folk medicine; North Kordofan; Western Sudan; Medicinal plants; ethnobotany; conservation. Introduction Plants have always played a major role in the treatment of human traumas and diseases worldwide [1]. They have been used as sources of modern drugs, either by providing pure compounds, starting materials for partial synthesis of useful compounds or models for synthesis of new drugs [2]. Ethnopharmacological information is an important tool in drug discovery [3]. From the ethnobotanical point of view North Kordofan is one of the least studied regions of Western Sudan.
    [Show full text]
  • Peruvian Bark: from Specific Febrifuge to Universal Remedy
    4 Peruvian Bark: From Specific Febrifuge to Universal Remedy Introduction Most histories of therapeutics, and of medicine in general, mention the introduction of Peruvian bark in the seventeenth century as an important event. 1 There are chiefly three reasons for this attention. Firstly, Peruvian bark (Cinchona officinalis Lin.) was the predecessor and source of the therapeutically effective alkaloid quinine. Secondly, it was the prototype of a “specific” remedy (against intermittent fevers, i.e. malaria), which challenged the principles of traditional, Galenic therapy. And thirdly, it was an example of the transfer of medical knowledge and drugs from the New to the Old World. That there must have been considerable need for remedies against the “intermittents” is clear from the high prevalence of malaria in Europe in the seventeenth and eighteenth centuries. Not only the Mediterranean countries were affected, but also those further north, including England, especially the marshy regions. Moreover, malaria was a serious problem for many colonial settlements. 2 The disease was generally explained with the classic theory of miasms, or bad airs, which led to corruption of the humours. Various forms were distinguished: tertian fever, with a febrile paroxysm on the “first and third” days (i.e. every second day), thought to be caused by corrupted “yellow bile”; quartan fever, with fever attacks on the “first and fourth” days (i.e. every third day), attributed to changes of the “black bile” of the spleen; and various mixed forms, such as semitertian, impure tertian, or double quartan fevers. Especially feared was a malignant form, in which the fever returned every day.
    [Show full text]