Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Systematics Economic Botany and Ethnobotany
CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic. -
Rubiaceae) in Africa and Madagascar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Syst Evol (2010) 285:51–64 DOI 10.1007/s00606-009-0255-8 ORIGINAL ARTICLE Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar Franc¸ois Anthony • Leandro E. C. Diniz • Marie-Christine Combes • Philippe Lashermes Received: 31 July 2009 / Accepted: 28 December 2009 / Published online: 5 March 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Phylogeographic analysis of the Coffea subge- biogeographic differentiation of coffee species, but they nus Coffea was performed using data on plastid DNA were not congruent with morphological and biochemical sequences and interpreted in relation to biogeographic data classifications, or with the capacity to grow in specific on African rain forest flora. Parsimony and Bayesian analyses environments. Examples of convergent evolution in the of trnL-F, trnT-L and atpB-rbcL intergenic spacers from 24 main clades are given using characters of leaf size, caffeine African species revealed two main clades in the Coffea content and reproductive mode. subgenus Coffea whose distribution overlaps in west equa- torial Africa. Comparison of trnL-F sequences obtained Keywords Africa Á Biogeography Á Coffea Á Evolution Á from GenBank for 45 Coffea species from Cameroon, Phylogeny Á Plastid sequences Á Rubiaceae Madagascar, Grande Comore and the Mascarenes revealed low divergence between African and Madagascan species, suggesting a rapid and radial mode of speciation. A chro- Introduction nological history of the dispersal of the Coffea subgenus Coffea from its centre of origin in Lower Guinea is pro- Coffeeae tribe belongs to the Ixoroideae monophyletic posed. -
The Cinchona Program (1940-1945): Science and Imperialism in the Exploitation of a Medicinal Plant
The Cinchona Program (1940-1945): science and imperialism in the exploitation of a medicinal plant Nicolás Cuvi (*) (*) Facultad Latinoamericana de Ciencias Sociales, FLACSO-Ecuador; Centre d’Història de la Ciència, Universitat Autònoma de Barcelona. [email protected] Dynamis Fecha de recepción: 25 de enero de 2010 [0211-9536] 2011; 31 (1): 183-206 Fecha de aceptación: 27 de julio de 2010 SUMARIO: 1.—Introduction. 2.—Cinchona and its alkaloids. 3.—The War and the need for raw materials. 4.—The quest for Cinchona in the Andes. 5.—Extraction and sale of Cinchona. 6.—Nur- series, plantations and alkaloids factories. 7.—The end of the Cinchona Program. 8.—Epilogue. ABSTRACT: During World War II, the United States implemented programs to exploit hundreds of raw materials in Latin America, many of them botanical. This required the participation of the country’s scientific community and marked the beginning of intervention in Latin Ame- rican countries characterized by the active participation of the United States in negotiations (and not only by private firms supported by the United States). Many federal institutions and companies were created, others were adapted, and universities, research centers and pharma- ceutical companies were contracted. The programs undertaken by this coalition of institutions served to build and consolidate the dependence of Latin American countries on United States technology, to focus their economies on the extraction and development of resources that the United States could not obtain at home (known as «complementary») and to impede the development of competition. Latin American republics had been historically dependant on raw material exports (minerals and plants). -
Pollen Morphology of Some Cuban Guettarda Species
This article was downloaded by: [200.196.73.69] On: 27 April 2013, At: 13:36 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Grana Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/sgra20 Pollen morphology of some Cuban Guettarda species (Rubiaceae: Guettardeae) Lázara Sotolongo Molina , Maira Fernández Zequeira & Pedro Herrera Oliver Version of record first published: 05 Nov 2010. To cite this article: Lázara Sotolongo Molina , Maira Fernández Zequeira & Pedro Herrera Oliver (2002): Pollen morphology of some Cuban Guettarda species (Rubiaceae: Guettardeae), Grana, 41:3, 142-148 To link to this article: http://dx.doi.org/10.1080/001731302321042605 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Grana 41: 142–148, 2002 Pollen morphology of some Cuban Guettarda species (Rubiaceae: Guettardeae) LA´ ZARA SOTOLONGO MOLINA, MAIRA FERNA´ NDEZ ZEQUEIRA and PEDRO HERRERA OLIVER Sotolongo Molina, L., Ferna´ndez Zequeira, M. -
Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm. -
Progress on Southeast Asia's Flora Projects
Gardens' Bulletin Singapore 71 (2): 267–319. 2019 267 doi: 10.26492/gbs71(2).2019-02 Progress on Southeast Asia’s Flora projects D.J. Middleton1, K. Armstrong2, Y. Baba3, H. Balslev4, K. Chayamarit5, R.C.K. Chung6, B.J. Conn7, E.S. Fernando8, K. Fujikawa9, R. Kiew6, H.T. Luu10, Mu Mu Aung11, M.F. Newman12, S. Tagane13, N. Tanaka14, D.C. Thomas1, T.B. Tran15, T.M.A. Utteridge16, P.C. van Welzen17, D. Widyatmoko18, T. Yahara14 & K.M. Wong1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA 3Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand 4Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University Building 1540, Ny Munkegade 114, Aarhus C DK 8000, Denmark 5The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand 6Herbarium, Forest Research Institute Malaysia, Kepong, Selangor 52109, Malaysia 7School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 8Department of Forest Biological Sciences, College of Forestry & Natural Resources, University of the Philippines - Los Baños, College, 4031 Laguna, Philippines 9Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 7818125, Japan 10Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam 11Forest -
Cinchona Amazonica Standl. (Rubiaceae) No Estado Do Acre, Brasil1 Cinchona Amazonica Standl
Bol. Mus. Para. Emílio Goeldi. Ciências Naturais, Belém, v. 1, n. 1, p. 9-18, jan-abr. 2006 Cinchona amazonica Standl. (Rubiaceae) no estado do Acre, Brasil1 Cinchona amazonica Standl. (Rubiaceae) in the state of Acre, Brazil Percy Amilcar Zevallos Pollito I Mário Tomazello Filho II ResumoResumo: O presente estudo trata da dendrologia, distribuição geográfica e status de conservação de Cinchona amazonica Standl., plantas de interesse medicinal que ocorrem no estado do Acre, Brasil. A pesquisa consistiu em trabalhos de campo para a coleta de material botânico, levantamento e estudo das exsicatas disponíveis nos herbários nacionais e internacionais da América do Sul, revisão bibliográfica das espécies do gênero na literatura e nos sites especializados. Os resultados apresentam a descrição com a sua ilustração e mapeamento bem como determinação da sua situação populacional. Palavras-chavealavras-chave: Cinchona. Dendrologia. Ditribuição geográfica. Status de conservação. Acre. AbstractAbstract: The present research is about dendrology, geographic distribution and status of conservation of Cinchona amazonica Standl. with are plants with medical interest; they grow in the state of Acre, Brazil. The research consisted in: field work for the collection of botanical material, in the survey and study of the available exsiccates in the national and international herbariums of the South America. It has been done a bibliographical review of the species of this genera in literature and the specialized sites The results present the description of the species with their illustration and mapping, as well as determination of their population situation. Keywordseywords: Cinchona. Dendrology. Geographic distribution. Conservation status. Acre I Universidade Nacional Agraria La Molina. Faculdad de Ciencias Florestales. -
Redalyc.GUSTAVE PLANCHON
Revista CENIC. Ciencias Biológicas ISSN: 0253-5688 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime GUSTAVE PLANCHON Revista CENIC. Ciencias Biológicas, vol. 46, núm. 3, septiembre-diciembre, 2015, pp. 270 -284 Centro Nacional de Investigaciones Científicas Ciudad de La Habana, Cuba Disponible en: http://www.redalyc.org/articulo.oa?id=181241373006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista CENIC Ciencias Biológicas, Vol. 46, No. 3, pp. 285-284, septiembre-diciembre, 2015. GUSTAVE PLANCHON Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105 [email protected] Recibido: 15 de febrero de 2015. Aceptado: 16 de marzo de 2015. Palabras clave: botánica, elemi, geobotánica, globularias, jaborandi, farmacia, quinquinas, Strichnos, tufas. Key words: botany, elemi, geobotany, globularias, jaborandi, pharmacy, quinquinas, Strychnos, tufas. RESUMEN. Gustave Planchon (1833-1900), médico, farmacéutico y botánico francés promotor de la enseñanza de farmacia en Francia, realizó investigaciones en zoología, botánica, geobotánica, fitopaleontología, fisiología vegetal, medicamentos, e historia de la farmacia. Sus principales publicaciones se centraron en las globularias, quinquinas, Strychnos, y descripción detallada de la estructura de los diferentes órganos de plantas y árboles. ABSTRACT. Gustave Planchon (1833-1900), French physician, pharmacist, and botanist, promoter of the teaching of pharmacy in France, carried on research in zoology, botany, geobotany, phytopaleontology, plant physiology, drugs, and history of pharmacy. -
Plants and Parts of Plants Used in Food Supplements: an Approach to Their
370 ANN IST SUPER SANITÀ 2010 | VOL. 46, NO. 4: 370-388 DOI: 10.4415/ANN_10_04_05 ES I Plants and parts of plants used OLOG D in food supplements: an approach ETHO to their safety assessment M (a) (b) (b) (b) D Brunella Carratù , Elena Federici , Francesca R. Gallo , Andrea Geraci , N (a) (b) (b) (a) A Marco Guidotti , Giuseppina Multari , Giovanna Palazzino and Elisabetta Sanzini (a)Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare; RCH (b) A Dipartimento del Farmaco, Istituto Superiore di Sanità, Rome, Italy ESE R Summary. In Italy most herbal products are sold as food supplements and are subject only to food law. A list of about 1200 plants authorised for use in food supplements has been compiled by the Italian Ministry of Health. In order to review and possibly improve the Ministry’s list an ad hoc working group of Istituto Superiore di Sanità was requested to provide a technical and scientific opinion on plant safety. The listed plants were evaluated on the basis of their use in food, therapeu- tic activity, human toxicity and in no-alimentary fields. Toxicity was also assessed and plant limita- tions to use in food supplements were defined. Key words: food supplements, botanicals, herbal products, safety assessment. Riassunto (Piante o parti di piante usate negli integratori alimentari: un approccio per la valutazione della loro sicurezza d’uso). In Italia i prodotti a base di piante utilizzati a scopo salutistico sono in- tegratori alimentari e pertanto devono essere commercializzati secondo le normative degli alimenti. Le piante che possono essere impiegate sono raccolte in una “lista di piante ammesse” stabilita dal Ministero della Salute. -
Long-Term Impacts of an Invasive Tree Species on Gala´Pagos Highland Vegetation
Journal of Ecology 2009, 97, 1252–1263 doi: 10.1111/j.1365-2745.2009.01578.x Destruction without extinction: long-term impacts of an invasive tree species on Gala´pagos highland vegetation Heinke Ja¨ger1,2*†, Ingo Kowarik1 and Alan Tye2‡ 1Department of Ecology, Technische Universita¨t Berlin, Rothenburgstr. 12, 12165 Berlin, Germany; and 2Charles Darwin Research Station, Santa Cruz, Gala´pagos, Ecuador Summary 1. A common belief in invasion ecology is that invasive species are a major threat to biodiversity, but there is little evidence yet that competition from an exotic plant species has led to the extinction of any native plant species at the landscape scale. However, effects of invasive species at community and ecosystem levels can severely compromise conservation goals. 2. Our model species, the red quinine tree (Cinchona pubescens), was introduced to the Gala´ pagos Islands in the 1940s and today extends over at least 11 000 ha in the highlands of Santa Cruz Island. It is also invasive on other oceanic islands. 3. We adopted a long-term approach, analysing permanent plots in the Fern-Sedge vegetation zone over 7 years, to test for impacts of C. pubescens density on resident plant species composition and on microclimate variables. We also tested whether the C. pubescens invasion facilitated the invasion of other species. 4. The rapid pace of the C. pubescens invasion was indicated by a more than doubling of percentage cover, a 4.6-fold increase in mean stand basal area and a 4-fold increase in the number of stems ha)1 in 7 years. -
Cinchona Pubescens Quinine Tree Rubiaceae
Cinchona pubescens Quinine tree Rubiaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Cinchona pubescens, native from Andean South America north to Costa Rica, has been cultivated in various tropical regions of the world mainly for use in the production of quinine, a medicine used to treat malaria, which is obtained from the root and bark of the tree. In some places where C. pubescens is cultivated, such as Galapagos and Hawai'i, it is spreading from initial plantings, invading nearby forests, forming dense thickets, and crowding out native plants. In Hawai'i, Cinchona plantations were planted as early as 1868 on Maui with later plantings by state foresters on O'ahu, Maui, and Hawai'i in the first half of the 1900's (Wagner et al. 1999). C. pubescens was reported as naturalized in 1978 from the island of Hawai'i and in 1987 from Maui (Wagner et al. 1999). On Maui, C. pubescens is locally abundant in the Makawao Forest Reserve of East Maui in areas near original plantings and alien forestry plantations, along old roads, and in thick native mixed mesic to wet forests. Though seed production is heavy, this species does not seem to disperse very far from original plants. Though locally abundant, it is fairly far along in its invasion process, and the terrain is very difficult, including steep gulches and thick under-story vegetation, making control of this species difficult. While eradication of C. pubescens in the Makawao Forest Reserve would be difficult, controlling small populations in pockets of rich native vegetation may help contain the infestation and slow the degradation of the remaining native forests in the area. -
The Evolution of Bat Pollination: a Phylogenetic Perspective
Annals of Botany 104: 1017–1043, 2009 doi:10.1093/aob/mcp197, available online at www.aob.oxfordjournals.org INVITED REVIEW The evolution of bat pollination: a phylogenetic perspective Theodore H. Fleming1,*, Cullen Geiselman2 and W. John Kress3 1Emeritus, Department of Biology, University of Miami, Coral Gables, FL 33124, USA, 2Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458, USA and 3Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA Received: 2 April 2009 Returned for revision: 27 May 2009 Accepted: 13 July 2009 Published electronically: 29 September 2009 † Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecologi- cal and evolutionary consequences are explored. Downloaded from † Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes.