Lipids Lipid Nomenclature

Total Page:16

File Type:pdf, Size:1020Kb

Lipids Lipid Nomenclature Chapter 8 questions: 5,6,7,10,15,16,17,18,20,21,22. Also, how does the fact that many glycerophospholipids are made of unsaturated fatty acids affect the physical properties of the fatty acids and the membrane lipids to which they are esterified? Lipids •Lipids in biological systems can be hydrophobic or amphipathic. •Hydrophobic lipids, not surprisingly, are hydrophobic. •Amphipathic lipids have a polar group (head) and a hydrophobic group (tail) and are utilized in membranes. If the polar group has a carboxylic acid moiety, this is a fatty acid. •Fatty acids can be saturated or unsaturated. •Saturated fatty acids have only single carbon-carbon bonds. •Unsaturated fatty acids have at least one double carbon-carbon bond. •Monoumsaturated fatty acids have one double carbon-carbon bond •Polyunsaturated fatty acids have more than one double carbon-carbon bond. Lipid nomenclature • Lipids have common names , e.g., myristic acid. • The systematic name takes into account the number of carbons in the hydrophobic chain, e.g., tetradodecanoic acid for the 14 carbons of myristic acid. • The symbol nomenclature takes into account the number of carbons in the chain and the number of unsaturated bonds. Myristic acids is described by 14:0, meaning there are 14 carbons and no unsaturated bonds. • Linoleic acid has 18 carbons and two double bonds, one between C9 and C10, and the other between C12 and C13. The systematic name is 9,12-octadecadienoic acid. The symbol nomenclature is 18:2 (9,12). • Carbon counting starts at the carboxylic acid carbon in the delta counting system. Carbon counting starts at the carbon end in the omega counting system. Thus linoleic acid is a delta-9,12 or an omega-6,9 fatty acid. 1 Lipid structure On the right are C18 fatty acids. All double bonds have a cis configuration. In membranes, most of the fatty acids are saturated because the double bond causes a severe “kink” in the molecules that prevents close packing. Nevertheless, some flexibility must be maintained in biological membranes. Lipid structure 2 Triacylglycerols •Function as energy storage molecules, not as membrane components. •Triacylglycerols are a main component of fats and oils. •Different oils contain different types of triacylglycerols. •Fats are used for energy storage because they are are less oxidized than carbohydrates. When completely oxidized, they yield more energy than carbohydrates. Glycerophospholipids (1) Also called phosphoglycerides. These are the major components of biological membranes. The molecules are glycerol-3-phosphate, with the C1 and C2 positions esterified with fatty acids. Also, the phosphate group on C3 sometimes is coupled to another group. If the C3 phosphate is not coupled to another group, the molecule is phosphatidic acid, which is not found in large amounts in biological membranes. 3 Glycerophospholipids (2) A common constituent of membranes is 1-stearoyl-2-oleoyl-phosphatidylcholine. One of the three chains is unsaturated, which is typical for biological membranes. Glycerophospholipids (3) •Lung surfactant is the major fat component in the lungs. Surfactant is the glycerophospholipid dipalmitoyl phosphatidylcholine (DPPC). This glycerophospholipid has only saturated palmitoyl chains, which allow the molecules to pack very closely in a single layer. The polar heads point towards the alveolar cells, whereas the non-polar tails point towards the inhaled air. •The close packing of the non-polar tails prevents the alveoli from ‘collapsing” on each other after exhalation. This is an efficient design because if the lungs had collapsed after each breath, a lot of energy would have been required to inflate them after each exhalation. •Premature infants, in general, do not have the appropriate amount of surfactant, so they get put on ventilators. Surfactant can be pumped into the lungs to prevent the alveoli from collapsing. Adults also can develop breathing disorders where surfactant is lacking. This also can be treated by introducing surfactant into the lungs. 4 Glycerophospholipids (4) •Phospholypases can hydrolyze glycerophospholipids. •Snake and bee venoms contain phospholypase A2, an enzymes that cleaves glycerophospholipids and causes the release of lysophospholipids (aka lysolecithin). These products can insert into membranes and act as detergents. •Lysophospholipids in the blood stream can lyse red blood cell and cause death. •Other phospholypases cleave the glycerophospholipid at different positions. Model of phospholipase A2 bound to a glycerophospholipid substrate The cobra venom enzyme structure was determined using X-ray crystallography. The phosphate group of the lipid can fit precisely within the active site of the enzyme. The glycerophospholipid is modeled into the structure, A calcium ion, a cofactor for the cleavage reaction, is shown in magenta. 5 Plasmalogens - platelet activating factor PAF is a representative of ether glycerophospholipids, also known as plasmalogens. The attachment between the glycerol moiety C1 and the R1 hydrocarbon chain (C16 in PAF) is via an ether linkage. In addition, the acyl group attached to the C2 in PAF is an acetate. This makes the molecule more water-soluble than glycerophospholipids, thus it can function as a messenger in intercellular signal transduction. Sphingolipids •A major component of many membrane types. They are derived from sphingosine (not glycerol) but their dimensions and charge distribution are very similar to the glycerophospholipids. •Sphingomyelin is found as an insulating sheath around nerve cell axons. •Cerebrosides contain a single sugar residue attached to the head group. •Gangliosides contain oligosaccharides attached to the head group. sphingomyelin phosphocholine head group 6 Sphingolipids Electron micrograph of myelinated nerve fibers. There are 10-15 myelin layers surrounding each axon, seen here in cross section. The myelin layers serve as electrical insulators. Defects in myelination result in neurological deficiencies such as multiple sclerosis. Steroids (1) The most abundant (and much maligned) steroid is cholesterol. It is made of 4 non-planar rings and a C3 hydroxyl group. 7 Steroids (2) Cholesterol functions as a precursor to steroid hormones. Glucocorticoids affect many biological functions including inflammatory responses, mental stress management, and carbohydrate, protein, and lipid metabolism. Example: cortisol. Aldosterones and mineracorticoids regulate salt balance, including excretion of salts by the kidneys. Androgens and estrogens regulate sexual development and function. Examples: testosterone, β-estradiol (estrogen), progesterone. Steroids (3) •Many diseases are associated with steroid malfunction. Cholesterol-related heart disease is an obvious example. •Vitamin D is a cholesterol derivative. The various forms of vitamin D, especially D2 and D3, regulate calcium absorption from food. Vitamins D2 and D3 are formed by exposure to sun light (although sun light does not contain vitamin D), which triggers a non-enzymatic conversion of a cholesterol derivative into vitamin D precursors. These precursors then become hydroxylated, thereby activated, in the kidneys and liver. •In the absence of adequate amounts of active vitamin D, calcium cannot be absorbed efficiently from the diet, and this results in a disease called rickets. Rickets is characterized by bone malformation, bone softness, and tooth brittleness. •Excessive vitamin D can cause high serum calcium levels, which can lead to kidney stones, kidney failure, and calcification of soft tissue. It has been suggested that the increase in skin pigmentation in populations living near the equator is a protective mechanism against excessive activation of vitamin D. 8 Vitamin D synthesis - production of 1,25 dihydroxycholecalciferol R CH3 R CH3 CH3 C D CH2 C D UV irradiation A B A B HO HO In Vitamin D3 , R = In Vitamin D2 , R = C25 becaomes hydroxylated in the liver and C1 becomes hydroxylated in the kidney to yield 1,25-dihydroxycholecalciferol CH3 CH2 OH HO OH 9.
Recommended publications
  • The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis
    OPEN International Journal of Obesity (2015) 39, 1331–1338 © 2015 Macmillan Publishers Limited All rights reserved 0307-0565/15 www.nature.com/ijo REVIEW The role of short chain fatty acids in appetite regulation and energy homeostasis CS Byrne1, ES Chambers1, DJ Morrison2 and G Frost1 Over the last 20 years there has been an increasing interest in the influence of the gastrointestinal tract on appetite regulation. Much of the focus has been on the neuronal and hormonal relationship between the gastrointestinal tract and the brain. There is now mounting evidence that the colonic microbiota and their metabolic activity have a significant role in energy homeostasis. The supply of substrate to the colonic microbiota has a major impact on the microbial population and the metabolites they produce, particularly short chain fatty acids (SCFAs). SCFAs are produced when non-digestible carbohydrates, namely dietary fibres and resistant starch, undergo fermentation by the colonic microbiota. Both the consumption of fermentable carbohydrates and the administration of SCFAs have been reported to result in a wide range of health benefits including improvements in body composition, glucose homeostasis, blood lipid profiles and reduced body weight and colon cancer risk. However, published studies tend to report the effects that fermentable carbohydrates and SCFAs have on specific tissues and metabolic processes, and fail to explain how these local effects translate into systemic effects and the mitigation of disease risk. Moreover, studies tend to investigate SCFAs collectively and neglect to report the effects associated with individual SCFAs. Here, we bring together the recent evidence and suggest an overarching model for the effects of SCFAs on one of their beneficial aspects: appetite regulation and energy homeostasis.
    [Show full text]
  • Fatty Acids and Risk of Prostate Cancer in a Nested Case-Control Study in Male Smokers
    1422 Vol. 12, 1422–1428, December 2003 Cancer Epidemiology, Biomarkers & Prevention Fatty Acids and Risk of Prostate Cancer in a Nested Case-Control Study in Male Smokers Satu Ma¨nnisto¨,1,3 Pirjo Pietinen,1 Mikko J. Virtanen,1 serum or dietary ␣-linolenic acid or any other Irma Salminen,2 Demetrius Albanes,5 unsaturated fatty acid and prostate cancer risk, but high Edward Giovannucci,3,4,6 and Jarmo Virtamo1 serum linoleic acid was associated with lower risk in men ␣ Departments of 1Epidemiology and Health Promotion, and 2Health and supplemented with -tocopherol. High serum myristic Functional Capacity, National Public Health Institute, Helsinki, Finland; acid associated with an increased risk of prostate cancer. Departments of 3Nutrition and 4Epidemiology, Harvard School of Public Health, Boston, Massachusetts; 5National Cancer Institute, NIH, Bethesda, Maryland; and 6Department of Medicine, Harvard Medical School, Boston, Introduction Massachusetts Migrant studies and ecologic evidence that incidence rates of clinical prostate cancer vary geographically much more than Abstract that of latent prostate cancer suggest that environmental factors play an important role at least in late prostatic carcinogenesis There is some evidence that ␣-linolenic acid might be (1). Some dietary factors especially have been observed to positively related to prostate cancer risk. Associations increase prostate cancer risk (2). between serum fatty acid composition as well as fatty The evidence on an association between fat intake and acid intakes and prostate cancer risk were examined in prostate cancer risk is mainly based on epidemiological studies. the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Most case-control studies have associated high intakes of ani- Study.
    [Show full text]
  • A Novel Lipid Screening Platform That Provides a Complete Solution for Lipidomics Research
    A Novel Lipid Screening Platform that Provides a Complete Solution for Lipidomics Research The Lipidyzer™ Platform, powered by Metabolon® Baljit K Ubhi1, Alex Conner1, Eva Duchoslav3, Annie Evans1, Richard Robinson1, Paul RS Baker4 and Steve Watkins1 1SCIEX, CA, USA, 2Metabolon, USA, 3SCIEX, Ontario, Canada and 4SCIEX, MA, USA INTRODUCTION MATERIALS AND METHODS A major challenge in lipid analysis is the many isobaric Applying the kit for simplified sample extraction and preparation, interferences present in highly complex samples that confound a serum matrix was used following the protocols provided. A identification and accurate quantitation. This problem, coupled QTRAP® System with SelexION® DMS Technology (SCIEX) with complicated sample preparation techniques and data was used for targeted profiling of over a thousand lipid species analysis, highlights the need for a complete solution that from 13 different lipid classes (Figure 2) allowing for addresses these difficulties and provides a simplified method for comprehensive coverage. Two methods were used covering analysis. A novel lipidomics platform was developed that thirteen lipid classes using a flow injection analysis (FIA); one includes simplified sample preparation, automated methods, and injection with SelexION® Technology ON and another with the streamlined data processing techniques that enable facile, SelexION® Technology turned OFF. The lipid molecular species quantitative lipid analysis. Herein, serum samples were analyzed were measured using MRM and positive/negative switching. quantitatively using a unique internal standard labeling protocol, Positive ion mode detected the following lipid classes – a novel selectivity tool (differential mobility spectrometry; DMS) SM/DAG/CE/CER/TAG. Negative ion mode detected the and novel lipid data analysis software.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Synthesis of Lysophospholipids
    Molecules 2010, 15, 1354-1377; doi:10.3390/molecules15031354 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis of Lysophospholipids Paola D’Arrigo 1,2,* and Stefano Servi 1,2 1 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy 2 Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory", Politecnico di Milano and Università degli Studi dell'Insubria, Via Mancinelli 7, 20131 Milano, Italy * Author to whom correspondence should be addressed; E-Mail: paola.d’[email protected]. Received: 17 February 2010; in revised form: 4 March 2010 / Accepted: 5 March 2010 / Published: 8 March 2010 Abstract: New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane–chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo- enzymatic procedures leading to 1- and 2-LPLs will be described.
    [Show full text]
  • Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors
    International Journal of Environmental Research and Public Health Article Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors Dariusz Kotl˛ega 1,* , Barbara Peda 1, Joanna Palma 2 , Agnieszka Zembro ´n-Łacny 3 , Monika Goł ˛ab-Janowska 4, Marta Masztalewicz 4, Przemysław Nowacki 4 and Małgorzata Szczuko 2 1 Department of Neurology, District Hospital, 67-200 Glogow, Poland; [email protected] 2 Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; [email protected] (J.P.); [email protected] (M.S.) 3 Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-001 Zielona Góra, Poland; [email protected] 4 Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] (M.G.-J.); [email protected] (M.M.); [email protected] (P.N.) * Correspondence: [email protected] Abstract: Ischemic stroke is a leading cause of motor impairment and psychosocial disability. Al- though free fatty acids (FFA) have been proven to affect the risk of stroke and potentially dementia, the evidence of their impact on cognitive functions in stroke patients is lacking. We aimed to establish such potential relationships. Seventy-two ischemic stroke patients were prospectively analysed. Their cognitive functions were assessed seven days post-stroke and six months later as follow-up (n = 41). Seven days post-stroke analysis of serum FFAs levels showed direct correlations between Citation: Kotl˛ega,D.; Peda, B.; Cognitive Verbal Learning Test (CVLT) and the following FFAs: C20:4n6 arachidonic acid and Palma, J.; Zembro´n-Łacny, A.; C20:5n3 eicosapentaenoic acid, while negative correlations were observed for C18:3n3 linolenic acid Goł ˛ab-Janowska,M.; Masztalewicz, (ALA), C18:4 n3 stearidonic acid and C23:0 tricosanoic acid.
    [Show full text]
  • Control of Differentiation of a Mammary Cell Line by Lipids
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 3, pp. 1551-1555, March 1980 Cell Biology Control of differentiation of a mammary cell line by lipids (domes/tumor promoters/fatty acids/lysolecithins) RENATO DULBECCO*, MAURO BOLOGNAt, AND MICHAEL UNGER The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037 Contributed by Renato Dulbecco, December 17, 1979 ABSTRACT A rat mammary cell line (LA7) undergoes profound effect on cultured cells of various types (13, 14). These spontaneous differentiation into domes due to production of effects include stimulation of growth (15), suppression of several specific inducers by the cells. Some of these inducers may be kinds of differentiation and induction of some other lipids, and we show that lipids regulate this differentiation as (16-24), both inducers and inhibitors. One inhibitor is the tumor pro- kinds of differentiation (25-27). TPA also induces a phenotype moter tetradecanoyl-13 phorbol 12-acetate. The inducers are similar to that of transformed cells (28-30), with a reduced saturated fatty acids of two groups: butyric acid and acids with contact inhibition of growth (31), increased production of chain lengths from C13 to C16, especially myristic acid (C14). plasminogen activator (32-35), increased phospholipid turnover Other inducers are myristoyl and palmitoyl lysolecithins, (36-38), decrease of LETS protein (39), and induction of myristic acid methyl ester, and two cationic detergents with a polyamine synthesis (40). TPA may alter the function of the cell tetradecenyl chain. We propose that the lipids with a C14-CI6 plasma membrane, as its alkyl chain affect differentiation by recognizing specific re- suggested by ability to inhibit the ceptors through their alkyl chains and that the effects obtained binding of epidermal growth factor to its receptors at the cell depend on the head groups.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • (L. 1758): on the Origin of Fatty Acids in Prepupae B
    www.nature.com/scientificreports OPEN About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae B. Hoc1, M. Genva2, M.‑L. Fauconnier2, G. Lognay1, F. Francis1 & R. Caparros Megido1* Although increasingly targeted in animal nutrition, black soldier fy larvae or prepupae (BSF, Hermetia illucens L. 1758) require the characterization and modulation of their fatty acid profle to become fully integrated within the feed sector. This improvement will only be possible by the understanding of underlaying biochemical pathways of fatty acid synthesis in BSF. In this study, we hypothesized a labelling of de novo synthesized fatty acids in BSF by the incorporation of deuterated water (D2O) in their feed. Three batches of ffty larvae were reared on two diets with diferent polyunsaturated fatty acid profles moistened with 40% of H2O or D2O: chicken feed or 40% of chicken feed and 60% of fax cake. Although the occurrence of D2O in insect feed increased the larval development time and decreased prepupal weight, it was possible to track the biosynthesis of fatty acids through deuterium labelling. Some fatty acids (decanoic, lauric or myristic acid) were exclusively present in their deuterated form while others (palmitic, palmitoleic or oleic acid) were found in two forms (deuterated or not) indicating that BSF can partially produce these fatty acids via biosynthesis pathways and not only by bioaccumulation from the diet. These results suggest the importance of carbohydrates as a source of acetyl‑CoA in the constitution of the BSF fatty acid profle but also the potential importance of specifc enzymes (e.g.
    [Show full text]
  • Chapter 11: Lipids
    ChapterChapter 11:11: LipidsLipids VoetVoet && Voet:Voet: PagesPages 380-394380-394 Lecture 11 Biochemistry 2000 Slide 1 LipidsLipids Lipids are distinguished by their high solubility in non polar solvents and low solubility in H2O ● Diverse group of compounds including Fats, Oils, Waxes, some vitamins and hormones and most non-protein components of membranes Lipids are (another) amphipathic molecules that can be: (A) Major components of biological membranes ● membranes define the basic unit of life (cell) and subcellular compartments (eucaryotes) ● includes cholesterol (B) Major form of stored energy in biological systems Adipocytes: ● lipids are largely reduced compounds; complete oxidation of lipids Fat storage cells generates lots of energy (ie. more than from sugars) (C) Hormones ● signal transduction (communication) between cells Lecture 11 Biochemistry 2000 Slide 2 OverviewOverview ofof BiologicalBiological LipidsLipids Fatty acids: principal building blocks of complex lipids Waxes: esters of fatty acids (heat sensitive) Triacylglycerols: membrane precursors, energy storage Glycerophospholipids: membrane components Sphingolipids: brain lipids, membrane components Steroids: cholesterol, bile salts, steroid hormones Terpenes: like turpentine Lecture 11 Biochemistry 2000 Slide 3 FattyFatty AcidsAcids BuildingBuilding blocksblocks ofof lipidslipids Composed of a carboxylic acid “head group” and a long hydrocarbon “tail” – tail generally contains an even number of carbon atoms Hydrocarbon tail can be saturated or unsaturated – unsaturated
    [Show full text]
  • Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review
    nutrients Review Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review Ewa Sokoła-Wysocza ´nska 1, Tomasz Wysocza ´nski 2, Jolanta Wagner 2,3, Katarzyna Czyz˙ 4,*, Robert Bodkowski 4, Stanisław Lochy ´nski 3,5 and Bozena˙ Patkowska-Sokoła 4 1 The Lumina Cordis Foundation, Szymanowskiego Street 2/a, 51-609 Wroclaw, Poland; [email protected] 2 FLC Pharma Ltd., Wroclaw Technology Park Muchoborska Street 18, 54-424 Wroclaw, Poland; [email protected] (T.W.); jolanta.pekala@flcpharma.com (J.W.) 3 Department of Bioorganic Chemistry, Faculty of Chemistry, University of Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wroclaw, Poland; [email protected] 4 Institute of Animal Breeding, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Street 38c, 50-001 Wroclaw, Poland; [email protected] (R.B.); [email protected] (B.P.-S.) 5 Institute of Cosmetology, Wroclaw College of Physiotherapy, Kosciuszki 4 Street, 50-038 Wroclaw, Poland * Correspondence: [email protected]; Tel.: +48-71-320-5781 Received: 23 August 2018; Accepted: 19 October 2018; Published: 21 October 2018 Abstract: Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies.
    [Show full text]
  • Fats and Fatty Acid in Human Nutrition
    ISSN 0254-4725 91 FAO Fats and fatty acids FOOD AND NUTRITION PAPER in human nutrition Report of an expert consultation 91 Fats and fatty acids in human nutrition − Report of an expert consultation Knowledge of the role of fatty acids in determining health and nutritional well-being has expanded dramatically in the past 15 years. In November 2008, an international consultation of experts was convened to consider recent scientific developments, particularly with respect to the role of fatty acids in neonatal and infant growth and development, health maintenance, the prevention of cardiovascular disease, diabetes, cancers and age-related functional decline. This report will be a useful reference for nutrition scientists, medical researchers, designers of public health interventions and food producers. ISBN 978-92-5-106733-8 ISSN 0254-4725 9 7 8 9 2 5 1 0 6 7 3 3 8 Food and Agriculture I1953E/1/11.10 Organization of FAO the United Nations FAO Fats and fatty acids FOOD AND NUTRITION in human nutrition PAPER Report of an expert consultation 91 10 − 14 November 2008 Geneva FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]