New Reports on Secretory Structures of Vegetative and Floral Organs of Hypericum Elodes (Hypericaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of Climate Change on Hypericum Elodes L
Atti Soc. Tosc. Sci. Nat., Mem., Serie B, 121 (2014) pagg. 15-24, figg. 3; doi: 10.2424/ASTSN.M.2014.02 ANGELINO CARTA (*) THE IMPACT OF CLIMATE CHANGE ON HYPERICUM ELODES L. (HYPERICACEAE) DISTRIBUTION: PREDICTING FUTURE TRENDS AND IDENTIFYING PRIORITIES Abstract - The Impact of Climate Change on Hypericum elodes L. termine (2050), che rappresentano le priorità di conservazione ex situ; (Hypericaceae) distribution: Predicting Future Trends and Identifying (2) identifica località centrali che potrebbero resistere al cambiamento Priorities. In this study the present and future predicted distribu- climatico almeno fino al 2050, e quindi servire come riservein situ a tion of the Atlantic-European soft-water pools specialist Hypericum lungo termine per H. elodes. elodes L. (Hypericaceae) is modelled in order to facilitate appro- priate decision making for conservation, monitoring and future Parole chiave - Cambiamenti climatici, Hypericum, MaxEnt, Modelli research. Using the methods of Maximum Entropy the future dis- distributivi. tribution has been examined with the HadCM3 climate model over the year 2050. H. elodes is confirmed as a climate-sensitive species, with a W-Eu- ropean distribution and preferences for acid substrates. The model INTRODUCTION shows a marked negative influence of climate change onH. elodes. In a locality analysis the outcome is a c. 58% reduction in the number The observation of ecological properties of species of pre-existing bioclimatically suitable localities by 2050. In an area and their areas of distribution being related is not analysis the outcome is a 57% reduction in suitable bioclimatic space new (Humboldt & Bonpland, 1807; Watson, 1835), by 2050. but the increasing availability of information on the This study establishes a fundamental baseline for assessing the con- sequences of climate change on populations of H. -
List Wild Flowers Trees.Pdf
WILD FLOWERS AND TREES ON ASHDOWN FOREST The Ashdown Forest Flora was published in 1996 and stands as a complete record of the status of every higher plant growing on the Forest. However, as the Flora is no longer in print, below is included a comprehensive list (excluding some of the identified hybrids and aggregates) of the higher plants found in the Forest area (roughly, the area included within the ancient pale) The status of each plant is added as an indication of its rarity: A = Abundant (most 1 km squares occupied) F = Frequent (approx. half of the squares occupied) O = Occasional (approx. one quarter of the squares occupied) S = Scattered (approx. a dozen of the squares occupied R = Rare (approx. one to three squares occupied) (Botanical names have been used to avoid the confusion of common names) Acer campestris O Acer platanoides O Acer pseudoplatanus A Achillea millefolium A Adoxa moschatellina R Aegopodium podagraria A Aesculus hippocastanum O Aethusa cynapium R Agrimonia eupatoria F Agrimonia procera R Agrostis canina A Agrostis capillaris A Agrostis gigantea F Agrostis stolonifera A Agrostis vineallis O Aira caryophyllea R Aira praecox F Ajuga reptans A Alcea rosea R Alchemilla mollis S Alisma plantago-aquatica S Alliaria petiolata F Allium paradoxum R Allium triquetrum R Allium ursinum S Alnus cordata R Alnus glutinosa A Alopecurus geniculatus S Alopecurus myosuroides R Alopecurus pratensis F Amelanchier lamarckii R Anacamptis pyramidalis R Anagallis arvensis O Anagallis minima R Anagallis tenella S Anemone nemorosa A Angelica -
Crassula Helmsii) Invading Moorland Pools
Aquatic Invasions (2017) Volume 12, Issue 3: 321–331 DOI: https://doi.org/10.3391/ai.2017.12.3.06 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Special Issue: Invasive Species in Inland Waters Research Article Competitive strength of Australian swamp stonecrop (Crassula helmsii) invading moorland pools Emiel Brouwer1,*, Luc Denys2, Esther C.H.E.T. Lucassen1, Martijn Buiks3 and Thierry Onkelinx2 1Radboud University, Research Centre B-WARE. Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 2Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium 3HAS University of Applied Sciences. Onderwijsboulevard 221, 5223 DE, s’Hertogenbosch, The Netherlands Author e-mails: [email protected] (EB), [email protected] (LD), [email protected] (EL), [email protected] (MB), [email protected] (TO) *Corresponding author Received: 31 October 2016 / Accepted: 2 September 2017 / Published online: 20 September 2017 Handling editor: Liesbeth Bakker Editor’s note: This study was first presented at the Centre for Wetland Ecology (CWE) symposium (24 June 2016, Wageningen, the Netherlands) on the role of exotic species in aquatic ecosystems (https://www.wetland-ecology.nl/en/calendar/good-bad- or-bit-both-role-exotic-species-aquatic-ecosystems). This symposium provided a venue to unravel how exotic plants and animals impact ecosystem functioning, find out whether they coexist or compete with native species and discover their impact on native flora and fauna. Abstract We conducted two indoor experiments to test the competitive strength of the invasive plant Crassula helmsii in comparison to that of two native moorland species from northwest Europe, Littorella uniflora and Hypericum elodes in terrestrial conditions. -
SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at -
Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -