Mechanism‐Guided Design and Synthesis of a Mitochondria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9-Cis-Retinal Isomerase Activity
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259313787 Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9-cis-Retinal Isomerase Activity Article in Journal of the American Chemical Society · January 2014 DOI: 10.1021/ja411366w · Source: PubMed CITATIONS READS 6 123 12 authors, including: Christin Bolze Rachel E. Helbling Vifor Pharma 13 PUBLICATIONS 21 CITATIONS 3 PUBLICATIONS 13 CITATIONS SEE PROFILE SEE PROFILE Arwen Pearson Guillaume Pompidor University of Hamburg European Molecular Biology Laboratory 78 PUBLICATIONS 1,083 CITATIONS 37 PUBLICATIONS 286 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Melanopsin View project AdPLA LRAT View project All content following this page was uploaded by Achim Stocker on 10 November 2017. The user has requested enhancement of the downloaded file. Article pubs.acs.org/JACS Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9-cis-Retinal Isomerase Activity † ‡ † § ∥ ⊥ ∇ Christin S. Bolze, , Rachel E. Helbling, Robin L. Owen, Arwen R. Pearson, Guillaume Pompidor, , ⊥ ⊥ ○ † # # Florian Dworkowski, Martin R. Fuchs, , Julien Furrer, Marcin Golczak, Krzysztof Palczewski, † † Michele Cascella,*, and Achim Stocker*, † ‡ Department of Chemistry and Biochemistry, and Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland § Diamond Light Source, Harwell Science and Innovation Campus, -
Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
DDX47 Polyclonal Antibody
PRODUCT DATA SHEET Bioworld Technology,Inc. DDX47 polyclonal antibody Catalog: BS71653 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: munogen and the purity is > 95% (by SDS-PAGE). This gene encodes a member of the DEAD box protein Applications: family. DEAD box proteins, characterized by the con- WB 1:500 - 1:2000 served motif Asp-Glu-Ala-Asp (DEAD), are putative IHC 1:50 - 1:200 RNA helicases. They are implicated in a number of cellu- Storage&Stability: lar processes involving alteration of RNA secondary Store at 4°C short term. Aliquot and store at -20°C long structure, such as translation initiation, nuclear and mito- term. Avoid freeze-thaw cycles. chondrial splicing, and ribosome and spliceosome assem- Specificity: bly. Based on their distribution patterns, some members DDX47 polyclonal antibody detects endogenous levels of of this family are believed to be involved in embryogene- DDX47 protein. sis, spermatogenesis, and cellular growth and division. DATA: The protein encoded by this gene can shuttle between the nucleus and the cytoplasm, and has an RNA-independent ATPase activity. Two alternatively spliced transcript var- iants encoding distinct isoforms have been found for this gene. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, 50% glycerol, pH7.2 Western blot analysis of extracts of various cell lines, using DDX47 an- Molecular Weight: tibody. ~ 50 kDa Note: Swiss-Prot: For research use only, not for use in diagnostic procedure. Q9H0S4 Purification&Purity: The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific im- Bioworld Technology, Inc. Bioworld technology, co. Ltd. -
An Adipocyte-Specific Lncrap2 - Igf2bp2 Complex Enhances Adipogenesis and Energy Expenditure by Stabilizing Target Mrnas
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318980; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An adipocyte-specific lncRAP2 - Igf2bp2 complex enhances adipogenesis and energy expenditure by stabilizing target mRNAs Juan R. Alvarez-Dominguez1,4, Sally Winther2, Jacob B. Hansen2, Harvey F. Lodish1,3,* and Marko Knoll1,5,* 1 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA 2 Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark 3 Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA, 02142, USA 4 Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA 5 Institute for Diabetes Research, Helmholtz Zentrum München, Heidemannstrasse 1, 80939 München, Germany *correspondence: [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318980; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract lncRAP2 is a conserved cytoplasmic adipocyte-specific lncRNA required for adipogenesis. Using hybridization-based purification combined with in vivo interactome analyses, we show that lncRAP2 forms ribonucleoprotein complexes with several mRNA stability and translation modulators, among them Igf2bp2. -
Primepcr™Assay Validation Report
PrimePCR™Assay Validation Report Gene Information Gene Name DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 Gene Symbol Ddx47 Organism Rat Gene Summary Description Not Available Gene Aliases Not Available RefSeq Accession No. Not Available UniGene ID Rn.73790 Ensembl Gene ID ENSRNOG00000007838 Entrez Gene ID 297685 Assay Information Unique Assay ID qRnoCID0019436 Assay Type SYBR® Green Detected Coding Transcript(s) ENSRNOT00000011096 Amplicon Context Sequence AAGGCGAGGTCCATTCTCCTAGCGACTGATGTGGCCAGCAGAGGTCTGGACATA CCCCATGTGGATGTAGTAGTCAATTTTGACATTCCGACTCATTCTAAGGATTATAT CCATCGAGTAGGACGAACTGCGAGAGCTGGGCGCTC Amplicon Length (bp) 116 Chromosome Location 4:233055569-233057354 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 98 R2 0.9985 cDNA Cq 20.96 cDNA Tm (Celsius) 81.5 gDNA Cq Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report Ddx47, Rat Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online. Detected Coding Transcript(s) This is a list of the Ensembl transcript ID(s) that this assay will detect. Details for each transcript can be found on the Ensembl website at www.ensembl.org. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/30002 Please be advised that this information was generated on 2021-10-03 and may be subject to change. of Sharola Dharmaraj amaurosis analysis and congenital Clinical molecular Leber Clinical and molecular analysis of Leber congenital amaurosis Sharola Dharmaraj Clinical and molecular analysis of Leber congenital amaurosis Sharola Dharmaraj SSharolaharola BBW.inddW.indd 1 229-May-079-May-07 110:45:200:45:20 AAMM Clinical and molecular analysis of Leber congenital amaurosis PhD thesis Radboud University Nijmegen Medical Centre Sharola Dharmaraj ISBN: 978-90-9021-989-9 © 2007 S. Dharmaraj All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, by print or otherwise, without permission in writing from the author. Cover image: Fundus in LCA5-associated LCA (K.Klima) Print and layout by: Optima Grafi sche Communicatie, Rotterdam SSharolaharola BBW.inddW.indd 2 229-May-079-May-07 110:45:220:45:22 AAMM Clinical and molecular analysis of Leber congenital amaurosis Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnifi cus prof. mr. S.C.J.J Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op maandag 2 juli 2007 om 13.30 uur precies door Sharola Dharmaraj geboren op 11 december 1961 te India SSharolaharola BBW.inddW.indd 3 229-May-079-May-07 110:45:220:45:22 AAMM Promotor: Prof. -
Genome-Wide Insights on Gastrointestinal Nematode
www.nature.com/scientificreports OPEN Genome‑wide insights on gastrointestinal nematode resistance in autochthonous Tunisian sheep A. M. Ahbara1,2, M. Rouatbi3,4, M. Gharbi3,4, M. Rekik1, A. Haile1, B. Rischkowsky1 & J. M. Mwacharo1,5* Gastrointestinal nematode (GIN) infections have negative impacts on animal health, welfare and production. Information from molecular studies can highlight the underlying genetic mechanisms that enhance host resistance to GIN. However, such information often lacks for traditionally managed indigenous livestock. Here, we analysed 600 K single nucleotide polymorphism genotypes of GIN infected and non‑infected traditionally managed autochthonous Tunisian sheep grazing communal natural pastures. Population structure analysis did not fnd genetic diferentiation that is consistent with infection status. However, by contrasting the infected versus non‑infected cohorts using ROH, LR‑GWAS, FST and XP‑EHH, we identifed 35 candidate regions that overlapped between at least two methods. Nineteen regions harboured QTLs for parasite resistance, immune capacity and disease susceptibility and, ten regions harboured QTLs for production (growth) and meat and carcass (fatness and anatomy) traits. The analysis also revealed candidate regions spanning genes enhancing innate immune defence (SLC22A4, SLC22A5, IL‑4, IL‑13), intestinal wound healing/repair (IL‑4, VIL1, CXCR1, CXCR2) and GIN expulsion (IL‑4, IL‑13). Our results suggest that traditionally managed indigenous sheep have evolved multiple strategies that evoke and enhance GIN resistance and developmental stability. They confrm the importance of obtaining information from indigenous sheep to investigate genomic regions of functional signifcance in understanding the architecture of GIN resistance. Small ruminants (sheep and goats) make immense socio-economic and cultural contributions across the globe. -
DEAH)/RNA Helicase a Helicases Sense Microbial DNA in Human Plasmacytoid Dendritic Cells
Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells Taeil Kima, Shwetha Pazhoora, Musheng Baoa, Zhiqiang Zhanga, Shino Hanabuchia, Valeria Facchinettia, Laura Bovera, Joel Plumasb, Laurence Chaperotb, Jun Qinc, and Yong-Jun Liua,1 aDepartment of Immunology, Center for Cancer Immunology Research, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; bDepartment of Research and Development, Etablissement Français du Sang Rhône-Alpes Grenoble, 38701 La Tronche, France; and cDepartment of Biochemistry, Baylor College of Medicine, Houston, TX 77030 Edited by Ralph M. Steinman, The Rockefeller University, New York, NY, and approved July 14, 2010 (received for review May 10, 2010) Toll-like receptor 9 (TLR9) senses microbial DNA and triggers type I Microbial nucleic acids, including their genomic DNA/RNA IFN responses in plasmacytoid dendritic cells (pDCs). Previous and replicating intermediates, work as strong PAMPs (13), so studies suggest the presence of myeloid differentiation primary finding PRR-sensing pathogenic nucleic acids and investigating response gene 88 (MyD88)-dependent DNA sensors other than their signaling pathway is of general interest. Cytosolic RNA is TLR9 in pDCs. Using MS, we investigated C-phosphate-G (CpG)- recognized by RLRs, including RIG-I, melanoma differentiation- binding proteins from human pDCs, pDC-cell lines, and interferon associated gene 5 (MDA5), and laboratory of genetics and physi- regulatory factor 7 (IRF7)-expressing B-cell lines. CpG-A selectively ology 2 (LGP2). RIG-I senses 5′-triphosphate dsRNA and ssRNA bound the aspartate-glutamate-any amino acid-aspartate/histi- or short dsRNA with blunt ends. -
Protein Short Name
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017 spot id. protein protein prot acc N° Mw unique sequence peptides identified short name full name (uniprot) peptides coverage (truncated) protein quality control & degradation (q) q1a psb3 ac. Proteasome beta 3 subunit Q9R1P1 22966 8 51% DAVSGMGVIVHVIEK - FGIQAQMVTTDFQK - FGPYYTEPVIAGLDPK - IFPMGDR - LNLYELK - LYIGLAGLATDVQTVAQR - NCVAIAADR - QIKPYTLMSMVANLLYEK q1b psb3 bas Proteasome beta 3 subunit Q9R1P1 22966 8 50% DAVSGMGVIVHVIEKDK - FGIQAQMVTTDFQK - FGPYYTEPVIAGLDPK - GKNCVAIAADR - LNLYELK - LYIGLAGLATDVQTVAQR - NCVAIAADR - QIKPYTLMSMVANLLYEKR q2a sae1 ac SUMO-activating enzyme subunit 1 Q9R1T2 38620 2 7% AQNLNPMVDVK - VSQGVEDGPEAK q2b sae1 bas SUMO-activating enzyme subunit 1 Q9R1T2 38620 16 60% AQNLNPMVDVK - DPPHNNFFFFDGMK - EALEVDWSGEK - EEAGGGGGGGISEEEAAQYDR - FDAVCLTCCSR - FFTGDVFGYHGYTFANLGEHEFVEEK - GLTMLDHEQVSPEDPGAQFLIQTGSVGR - GSGIVECLGPQ - KPESFFTK - LDSSETTMVK - NDVFDSLGISPDLLPDDFVR - NRAEASLER - TAPDYFLLQVLLK - VDTEDVEKKPESFFTK - VEKEEAGGGGGGGISEEEAAQYDR - VLFCPVKEALEVDWSGEK q3 psd13 Proteasome regulatory subunit 13 Q9WVJ2 42810 18 57% CAWGQQPDLAANEAQLLR - DLPVSEQQER - DVPAFLQQSQSSGPGQAAVWHR - ETIEDVEEMLNNLPGVTSVHSR - FLGCVDIK - GSIDEVDKR - LEELYTK - LEELYTKK - LELWCTDVK - LNIGDLQATK - LYENFISEFEHR - QLTFEEIAK - QMTDPNVALTFLEK - QWLIDTLYAFNSGAVDR - SMEMLVEHQAQDILT - VHMTWVQPR - VLDLQQIK - YYQTIGNHASYYK q4 brcc3 Lys63-deubiquitinase brcc36 P46737 36151 3 13% FTYTGTEMR - VCLESAVELPK - VEISPEQLSAASTEAER q5 ube2n Ubiquitin -
Table Continues on Reverse Paired Immunoglobulin-Like Type 2 Receptor Beta (PILRB) Q9UKJ0 Sialic Acid-Binding Ig-Like Lectin 7 (SIGLEC7) Q9Y286
Adenosylhomocysteinase (AHCY) P23526 DNA-(apurinic or apyrimidinic site) lyase (APEX1) P27695 Adhesion G protein-coupled receptor E2 (ADGRE2) Q9UHX3 Ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) O75356 Adhesion G-protein coupled receptor G2 (ADGRG2) Q8IZP9 Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 Q6UWV6 (ENPP7) Amyloid-like protein 1 (APLP1) P51693 Eosinophil cationic protein (RNASE3) P12724 Angiopoietin-2 (ANGPT2) O15123 Fc receptor-like protein 1 (FCRL1) Q96LA6 Angiopoietin-related protein 1 (ANGPTL1) O95841 Fructose-1,6-bisphosphatase 1 (FBP1) P09467 Angiopoietin-related protein 7 (ANGPTL7) O43827 Galanin peptides (GAL) P22466 Annexin A4 (ANXA4) P09525 Gamma-enolase (ENO2) P09104 Annexin A11 (ANXA11) P50995 Glutaredoxin-1 (GLRX) P35754 Appetite-regulating hormone (GHRL) Q9UBU3 GRB2-related adapter protein 2 (GRAP2) O75791 Arginase-1 (ARG1) P05089 Hepatoma-derived growth factor (HDGF) P51858 Aromatic-L-amino-acid decarboxylase (DDC) P20711 Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1) Q01973 B-cell antigen receptor complex-associated protein beta chain (CD79B) P40259 Insulin-like growth factor-binding protein-like 1 (IGFBPL1) Q8WX77 Cadherin-2 (CDH2) P19022 Integrin beta-7 (ITGB7) P26010 Cadherin-related family member 5 (CDHR5) Q9HBB8 Kallikrein-10 (KLK10) O43240 Calsyntenin-2 (CLSTN2) Q9H4D0 Kynurenine-oxoglutarate transaminase 1 (KYAT1) Q16773 Carbonic anhydrase 13 (CA13) Q8N1Q1 Large proline-rich protein BAG6 (BAG6) P46379 Catechol O-methyltransferase (COMT) P21964 Leucine-rich