Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations
3794 Diabetes Volume 65, December 2016 Brian H. Chen,1,2,3 Marie-France Hivert,4,5,6 Marjolein J. Peters,7,8 Luke C. Pilling,9 John D. Hogan,10 Lisa M. Pham,10 Lorna W. Harries,11 Caroline S. Fox,2,3 Stefania Bandinelli,12 Abbas Dehghan,13 Dena G. Hernandez,14 Albert Hofman,13 Jaeyoung Hong,15 Roby Joehanes,2,3,16 Andrew D. Johnson,2,3 Peter J. Munson,17 Denis V. Rybin,18 Andrew B. Singleton,14 André G. Uitterlinden,7,8,13 Saixia Ying,17 MAGIC Investigators, David Melzer,9 Daniel Levy,2,3 Joyce B.J. van Meurs,7,8 Luigi Ferrucci,1 Jose C. Florez,5,19,20,21 Josée Dupuis,2,15 James B. Meigs,20,21,22 and Eric D. Kolaczyk10,23 Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations Diabetes 2016;65:3794–3804 | DOI: 10.2337/db16-0470 Genome-wide association studies (GWAS) have success- with fasting insulin levels after adjusting for age, sex, tech- fully identified genetic loci associated with glycemic traits. nical covariates, and complete blood cell counts. Among However, characterizing the functional significance of the findings, circulating IGF2BP2 transcript levels were these loci has proven challenging. We sought to gain positively associated with fasting insulin in both the FHS insights into the regulation of fasting insulin and fasting and RS. Using 1000 Genomes–imputed genotype data, we glucose through the use of gene expression microarray identified 47,587 cis-expression quantitative trait loci data from peripheral blood samples of participants without (eQTL) and 6,695 trans-eQTL associated with the 433 sig- diabetes in the Framingham Heart Study (FHS) (n = 5,056), nificant insulin-associated transcripts.
[Show full text]