bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318980; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An adipocyte-specific lncRAP2 - Igf2bp2 complex enhances adipogenesis and energy expenditure by stabilizing target mRNAs Juan R. Alvarez-Dominguez1,4, Sally Winther2, Jacob B. Hansen2, Harvey F. Lodish1,3,* and Marko Knoll1,5,* 1 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA 2 Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark 3 Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA, 02142, USA 4 Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA 5 Institute for Diabetes Research, Helmholtz Zentrum München, Heidemannstrasse 1, 80939 München, Germany *correspondence:
[email protected],
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318980; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract lncRAP2 is a conserved cytoplasmic adipocyte-specific lncRNA required for adipogenesis. Using hybridization-based purification combined with in vivo interactome analyses, we show that lncRAP2 forms ribonucleoprotein complexes with several mRNA stability and translation modulators, among them Igf2bp2.