<<

marine drugs

Review Polycyclic Guanidine Alkaloids from Poecilosclerida Marine

Estelle Sfecci 1, Thierry Lacour 2, Philippe Amade 1 and Mohamed Mehiri 1,*

1 Nice Institute of Chemistry, Marine Natural Product Team, University Nice Sophia Antipolis, Parc Valrose, 28 avenue de Valrose, 06108 Nice Cedex 02, France; [email protected] (E.S.); [email protected] (P.A.) 2 Biopreserv, 4 traverse Dupont, 06130 Grasse, France; [email protected] * Correspondence: [email protected]; Tel.: +33-492-076-154

Academic Editor: Kirsten Benkendorff Received: 2 February 2016; Accepted: 1 April 2016; Published: 9 April 2016

Abstract: Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given.

Keywords: marine sponges; Poecilosclerida; alkaloids; crambescidins; batzelladines; analytical tools; bioactivity

1. Introduction The most primitive benthic marine organisms are also among the most chemodiversified producers of secondary metabolites (SM). These compounds are used for predation and competition for space, as well as for communication, and protection against potential surrounding aggressors. Due to the high water dilution, the produced metabolites exhibit several potent biological activities [1]. Several reviews dealing with bioactive marine natural products, in particular, alkaloids have been published in the last few decades [2–19]. Of the many different marine species that have been researched, sponges are likely to be the most studied sources of marine natural products due to the large amount of structurally diverse SM scaffolds they produce. Even so, the last few years have seen a slight decline in the number of newly described metabolites [17,18]. In this review, we focused on the chemodiversity and biological activities of batzelladine- and crambescidin-like guanidine alkaloids isolated from Poecilosclerida marine sponges. These polycyclic guanidine alkaloids are extremely versatile SM [20]. Since their original isolation in 1989, several revisions have been made and many aspects remain to be studied. However, what is clear is that they seem to be specific to Poecilosclerida marine sponges. Over 53 derivatives have been isolated and their original structures, based on chemical degradation studies and extensive NMR and MS studies, have been revised since the development of their total synthesis. The structural and stereochemical complexity of this class of natural products have inspired the development of a number of new synthetic methodologies [21–34], which in turn has led to several total syntheses [31,33,35–50] beyond the scope of this review. Finally, these unique and fascinating structures are coupled with a wide range of biological activities due to the typical shape of their tricyclic skeleton. However, little is known about their exact mechanism of action.

Mar. Drugs 2016, 14, 77; doi:10.3390/md14040077 www.mdpi.com/journal/marinedrugs Mar. Drugs 2016, 14, 77 2 of 24 Mar. Drugs 2016, 14, 77 2 of 24

2. Structural Structural Diversity Diversity From 1989 to 2015,2015, 53 TGATGA (triazaacenaphthylene(triazaacenaphthylene guanidine alkaloids) have been isolated. Natural TGA reported toto datedate areare listedlisted inin TablesTables1 1and and2. 2. Ptilomycalin A ( (11),), isolated isolated from from the the sponges sponges PtilocaulisPtilocaulis spiculifer spiculifer andand HemimycaHemimycalele sp. sp.[51] [,51 is], the is theparent parent member member of a of group a group of ofrelated related metabolites. metabolites. This This includes includes crambescidins crambescidins [52 [52––5555]] and their derivatives (isocrambescidine(isocrambescidine (6 )[(526) ,56[52,56]], crambidine, crambidine (7)[52 ],( neofolitispates7) [52], neofolitispates (8–10)[57], crambescidin(8–10) [57], acidcrambescidin (14)[58], crambescidicacid (14) [58] acid, crambescidic (15)[59], ptilomycalin acid (15) [59] D (17, ptilomycalin)[60], monanchocidins D (17) [60] (18, monanchocidins–22)[61,62], and monanchomycalins(18–22) [61,62], and monanchomycalins (23–25)[63,64]), which (23– are25) found [63,64] in), severalwhich are sponges found (inCrambe several sponges, Neofolitispa (Crambe dianchora,crambe, Neofolitispa Monanchora dianchora arbuscula, Monanchora, Monanchora arbuscula ungiculata,, Monanchora Monanchora ungiculata dianchora, Monanchora, and Monanchora dianchora pulchra, and), asMonanchora well as, forpulchra a subset,), as well in theas, Newfor a subset, Caledonian in the starfishes New CaledonianFromia monilis starfishesand FromiaCelerina monilis heffernani and (TableCelerina1)[ heffernani65]. Additional (Table 1) [65] guanidine. Additional derivatives guanidine have derivatives been isolated, have suchbeen asisolated the batzelladines, such as the A–Ebatzelladines (26–30)from A–E ( the26–3 Bahamanian0) from the Bahamanian Batzella spongesp. Batzella (which sp. has (which since has been since revised been torevisedCrambe to crambeCrambe)[ crambe66], batzelladines) [66], batzelladines F–I (31 –F34–I) (3 from1–34 the) from Jamaican the Jamaican sponge spongeBatzella Batzellasp. [67 sp.], batzelladine [67], batzelladine J (51) fromJ (51) thefrom Caribbean the Caribbean sponge spongeMonanchora Monanchora unguifera unguifera[59], and [59] their, and derivatives their derivatives (clathriadic (clathriadic acid (41)[ acid68], merobatzelladines(41) [68], merobatzelladines (42,43)[69 ],(42 and,43) batzellamide [69], and batzellamide A (50)[70]) A from (50Monanchora) [70]) from unguiferaMonanchora, unguifera calla,, andClathriaMonanchora calla, and arbuscula Monanchora(Table arbuscula2). (Table 2). TGA are onlyonly foundfound inin PoeciloscleridaPoecilosclerida marine sponges. To date, they have been onlyonly isolatedisolated fromfrom thethe Crambidae Crambidae(Crambe (Crambe, Monanchora, Monanchora), ), Mycalidae(Arenochalina (Arenochalina, , ),Mycale Phoriospongidae), Phoriospongidae(Batzella, Hemimycale(Batzella, Hemimycale), and ), and Microcionidae (Clathria) (C familieslathria) [ 71families]. Sponges [71]. thatSponges produce that TGAproduce can TGA be found can be in warmfound waters,in warm without waters, distinctionwithout distinction between between oceansand oceans seas. and A seas. large A majority large majority were sampled were sampled in the Caribbeanin the Caribbean Sea (Figure Sea (Figure1). 1).

Figure 1.1.Geographical Geographical repartition repartition of new of TGAnew (triazaacenaphthyleneTGA (triazaacenaphthylene guanidine guanidine alkaloids) discoveredalkaloids) © . fromdiscovered 1989 to from 2015. 1989 Graphic to 2015.© d-maps.com Graphic d- [maps.com72]. Used with[72] permission. Used with permission.

Mar. Drugs 2016, 14, 77 3 of 24

Table 1. Reviewed crambescidin-like GA (guanidine alkaloids) from 1989 to 2015.

Discovery Guanidine Biological Synthesis Metabolite Species Sampling Site Ref. Year Moiety Activity Described Hemimycale sp. Ptilocaulis ptilomycalin A (1) Red sea 1989 1 Av, Am, At Yes [42,51,73] spiculifer crambescidin 800 (2) Palma de Mallorca, Mediterranean sea 1991 1 Av, Am, At Yes [54–56,73,74] Av, At, Ca2+ crambescidin 816 (3) Crambe crambe Palma de Mallorca, Mediterranean sea 1991 1 No [52,55,56,75] antagonist crambescidin 830 (4) Crambe crambe Palma de Mallorca, Mediterranean sea 1991 1 n.t. No [55] crambescidin 844 (5) Crambe crambe Palma de Mallorca, Mediterranean sea 1991 1 Av No [55,56] 13,14,15-isocrambescidine 800 (6) Crambe crambe Banyuls, Mediterranean sea 1993 1 Not active Yes [36,42,56] crambidine (7) Crambe crambe Banyuls, Mediterranean sea 1993 1 n.t. Yes [45,49,52] neofolitispate 1 (8) Neofolitispa dianchora Andaman Islands, Indian Ocean 1999 1 Av No [57] neofolitispate 2 (9) Neofolitispa dianchora Andaman Islands, Indian Ocean 1999 1 Av Yes [57] neofolitispate 3 (10) Neofolitispa dianchora Andaman Islands, Indian Ocean 1999 1 Av No [57] crambescidin 359 (11) Monanchora ungiculata Belize, North Atlantic Ocean 2000 1 n.t. Yes [33,41,48,53] crambescidin 431 (12) Monanchora ungiculata Belize, North Atlantic Ocean 2000 1 n.t. No [53] crambescidin 826 (13) Monanchora sp. Palau, Pacific Ocean 2003 1 Av No [54] crambescidin acid (14) Monanchora ungiculata Maldive Islands, Indian Ocean 2004 1 At No [58] Monanchora unguifera crambescidic acid (15) Panama, Caribbean side, Atlantic Ocean 2005 1 n.t. No [59] Monanchora dianchora 16β-hydroxycrambescidin 359 (16) Monanchora unguifera Jamaica, North Atlantic Ocean 2007 1 Am No [73] ptilomycalin D (17) Monanchora dianchora Madagascar, Indian Ocean 2007 1 n.t. No [60] monanchocidin A (18) Monanchora pulchra Urup Island, North Pacific Ocean 2010 1 At No [61] monanchocidin B (19) Monanchora pulchra Urup Island, North Pacific Ocean 2011 1 At No [62] monanchocidin C (20) Monanchora pulchra Urup Island, North Pacific Ocean 2011 1 At No [62] monanchocidin D (21) Monanchora pulchra Urup Island, North Pacific Ocean 2011 1 At No [62] monanchocidin E (22) Monanchora pulchra Urup Island, North Pacific Ocean 2011 1 At No [62] monanchomycalin A (23) Monanchora pulchra Urup Island, North Pacific Ocean 2012 1 At No [63] monanchomycalin B (24) Monanchora pulchra Urup Island, North Pacific Ocean 2012 1 n.t. No [63] monanchomycalin C (25) Monanchora pulchra Urup Island, North Pacific Ocean 2013 1 n.t. No [64] Am, antimicrobial activity; Av, antiviral activity; At, antitumoral activity; and n.t., not tested. Mar. Drugs 2016, 14, 77 4 of 24

Table 2. Reviewed batzelladine-like GA from 1989 to 2015.

Discovery Guanidine Biological Synthesis Metabolites Species Sampling Site Ref. Year Moiety Activities Described batzelladine A (26) Batzella sp. Bahamas, North Atlantic Ocean 1996 3 Am, Av Yes [32,46,66] batzelladine B (27) Batzella sp. Bahamas, North Atlantic Ocean 1996 3 Av No [66] batzelladine C (28) Batzella sp. Bahamas, North Atlantic Ocean 1996 2 Av, Am, At No [66,73] batzelladine D (29) Batzella sp. Bahamas, North Atlantic Ocean 1996 2 Av, Am Yes [37,40,46,47,66] batzelladine E (30) Batzella sp. Bahamas, North Atlantic Ocean 1996 2 n.t. Yes [35,66] batzelladine F (31) Batzella sp. Jamaica, North Atlantic Ocean 1997 2 Am Yes [30,39,42,67] batzelladine G (32) Batzella sp. Jamaica, North Atlantic Ocean 1997 2 Av No [67] batzelladine H (33) Batzella sp. Jamaica, North Atlantic Ocean 1997 2 Av No [67] batzelladine I (34) Batzella sp. Jamaica, North Atlantic Ocean 1997 2 Av No [67] dehydrobatzelladine C (35) Monanchora arbuscula Belize, North Atlantic Ocean 2000 2 Av, Am, At Yes [43,53,73] batzelladine J (36) Monanchora unguifera Panama, North Atlantic Ocean 2005 3 n.t. No [59] batzelladine K (37) Monanchora unguifera Jamaica, North Atlantic Ocean 2007 1 n.t. No [73] batzelladine L (38) Monanchora unguifera Jamaica, North Atlantic Ocean 2007 2 Av, Am, At No [73] batzelladine M (39) Monanchora unguifera Jamaica, North Atlantic Ocean 2007 2 Av, Am, At No [73] batzelladine N (40) Monanchora unguifera Jamaica, North Atlantic Ocean 2007 2 Av, At No [73] clathriadic acid (41) Clathria calla Martinique, North Atlantic Ocean 2009 1 Am No [68] merobatzelladine A (42) Monanchora sp. Amami-Oshima Island, North Pacific Ocean 2009 1 Am No [50,69] merobatzelladine B (43) Monanchora sp. Amami-Oshima Island, North Pacific Ocean 2009 1 Am Yes [69] norbatzelladine A (44) Monanchora arbuscula Guadeloupe Island, North Atlantic Ocean 2009 3 Am, At No [68] norbatzelladine L (45) Clathria calla Martinique, North Atlantic Ocean 2009 2 Am, At No [68] dinorbatzelladine A (46) Monanchora arbuscula Guadeloupe island, North Atlantic Ocean 2009 3 Am, At No [68] dinorbatzelladine B (47) Monanchora arbuscula Guadeloupe island, North Atlantic Ocean 2009 3 n.t. No [68] dinordehydrobatzelladine B (48) Monanchora arbuscula Guadeloupe island, North Atlantic Ocean 2009 3 Am, At No [68] dihomodehydrobatzelladine C (49) Monanchora arbuscula Guadeloupe island, North Atlantic Ocean 2009 2 Am, At No [68] batzellamide A (50) Monanchora arbuscula Rio de Janeiro state, South Atlantic Ocean 2015 2 n.t. No [70] hemibatzelladine J (51) Monanchora arbuscula Rio de Janeiro state, South Atlantic Ocean 2015 2 n.t. No [70] ∆19-hemibatzelladine J (52) Monanchora arbuscula Rio de Janeiro state, South Atlantic Ocean 2015 2 n.t. No [70] ∆200-hemibatzelladine J (53) Monanchora arbuscula Rio de Janeiro state, South Atlantic Ocean 2015 2 n.t. No [70] Am, antimicrobial activity; Av, antiviral activity; At, antitumor activity; and n.t., not tested. Mar. Drugs 2016, 14, 77 5 of 24

Mar. DrugsMar. 201Drugs6, 1 2014, x6 , 14, x 5 of 245 of 24

SinceSince Since 1989,1989, 1989, thethe numbernumber the number ofof newnew of TGATGAnew TGA discovereddiscovered discovered eacheach yeareachyear isisyear consideredconsidered is considered asas almostalmost as almost constant,constant, constant, althoughalthoughalthough itit shouldshould it should bebe notednoted be noted thatthat inin that somesome in yearssomeyears noyearsno newnew no TGA TGAnew wereTGAwere describedweredescribed described (Figure(Figure (Figure2 ).2). 2). Cumulative numberof new TGA Cumulative numberof new TGA discovered discovered

FigureFigureFigure 2.2. NumberNumber 2. Number ofof newnew of TGATGA new discovered discoveredTGA discovered sincesince 1989. 1989since. TheThe1989 numbernumber. The number ofof TGATGA of discovered discoveredTGA discovered perper yearyear per (grey(grey year (grey bars)bars) andandbars) thethe and cumulativecumulative the cumulative datadata representing representingdata representing thethe totaltotal the number numbertotal number ofof TGATGA of discovereddiscoveredTGA discovered (black(black (black curve)curve) curve) areare are presentedpresentedpresented fromfrom 1989 1989from toto 1989 2015.2015 to. 2015.

2.1.2.1. TGATGA2.1. StructuresStructuresTGA Structures EachEach TGAEachTGA isTGAis structurallystructurally is structurally closelyclosely closely relatedrelated related toto thethe to others.others. the others. Crambescidins-likeCrambescidins Crambescidins-like GAGA-like differdiffer GA differ fromfrom onefromone one another,anotheranother, by by the the, by C-8 C the-8 spiro spiro C-8 ring, spiroring, the ring,the presence presence the presence or or absence absence or absence of of a hydroxyl a hydroxyl of a hydroxyl group group at group C-13at C- or 13at the orC- 13 naturethe or nature the of nature the of of sidethe side chainthe chain side terminus chain terminus terminus at C-14. at C- 14.at C -14. TheThe structuresstructuresThe structures ofof 2222 relatedofrelated 22 related crambescidin-likecrambescidin crambescidin-likeGA GA-likeare are GAsummarized summarized are summarized in in Figure Figure in Figure3 .3. 3. OtherOtherOther derivativesderivatives derivatives suchsuch such asas 13,14,15-isocrambescidin13,14,15as 13,14,15-isocrambescidin-isocrambescidin 800800 800 ((66),), ( crambidincrambidin6), crambidin ((77)) or(or7) or 1616ββ-hydroxycrambescidin-hydroxycrambescidin16β-hydroxycrambescidin 359359 ((1616 359)) havehave (16) alsohavealso beenbeen also isolatedisolatedbeen isolated (Figure(Figure (Figure4 ).4). 4).

A A R 1 R1

5 5 H 19 O O HO O 19 N N N N 8 815 15 10 N 13 10 N 13O O nR R H H n H O HR 2O R2 H OHH OH = O O NH2 NH NH2 NH R R = 2 2 R = = N NH R N 2 NH2 O N O OHN OH O O

H2N monanchomycalin A (23): H2N monanchomycalin A (23): R1 = Et, R2 = H, n =14 monanchocidinmonanchocidin A (18 A): R(181 =): H, R1 R =2 H,= Et, R2 n= =13Et, n =13 R1 = Et, R2 = H, n =14 monanchomycalin B (24): monanchocidinmonanchocidin D (21 D): R(211 =): H, R1 R =2 H,= H, R2 n = =13H, n =13 monanchomycalin B (24): monanchocidin E (22): R1 = H, R2 = Et, n =12 R1 = H,R1 R =2 H,= H, R2 n = =14H, n =14 monanchocidin E (22): R1 = H, R2 = Et, n =12 FigureFigure 3. Cont 3.. Cont. Figure 3. Cont.

Mar. Drugs 2016, 14, 77 6 of 24 Mar. Drugs 2016, 14, 77 6 of 24 Mar. Drugs 2016, 14, 77 6 of 24 B B R3 R3 3 O H O 19 N N 3 O8 H O 1915 N N 8 10 N 13 15 R 10 13 2 H N R1 R2 H R1 crambescidin 359 (11): R1 = R2 = R 3 = H crambescidincrambescidin 359 431 (11 (12): ):R 1R =1 =R 2R =3 =R 3H, = HR2 = COOEt crambescidin 431 (12): R1 = R3 = H, R2 = COOEt crambescidin acid (14): R1 = R3 = H, R2 = COOH crambescidin acid (14): R1 = R3 = H, R2 = COOH = R2 O nR4 R = O 2 O nR4 O neofolitispate 1 (8): R1 = R3 = H, R4 = COOMe, n = 15 neofolitispate 1 (8): R1 = R3 = H, R4 = COOMe, n = 15 neofolitispate 2 (9): R1 = R3 = H, R4 = COOMe, n = 14 neofolitispate 2 (9): R1 = R3 = H, R4 = COOMe, n = 14 neofolitispate 3 (10): R1 = R3 = H, R4 = COOMe, n = 13 neofolitispate 3 (10): R1 = R3 = H, R4 = COOMe, n = 13 crambescidic acid (15): R1 = R3 = H, R4 = COOH, n = 14 crambescidic acid (15): R1 = R3 = H, R4 = COOH, n = 14 H ptilomycalin D (17): R1 = R3 = H, R4 = Me, n = 14 R = OH 2 O NH2 Hm ptilomycalin D (17): R1 = R3 = H, R4 = Me, n = 14 R R = OH 2 O NH2 mO N OH R NH2 O = O N OH R N NH 4 NH2 2 = R4 ON NH2 H2N O monanchocidinH2N B (19): ptilomycalin A (1): O monanchocidinR1 = R3 = H, m B= 13(19 ): ptilomycalinR1 = R3 = R = A H, (1 n): = 14 O NH R1 = R3 = H, m = 13 2 Rcrambescidin1 = R3 = R = H, 800n = (142): monanchocidin C (20): = N NH R4 NH 2 2 crambescidinR1 = R3 = H, R 800 = OH, (2): n = 14 monanchocidin1 3 C (20): = R = R = H, m = 14 R4 ON NH2 Rcrambescidin1 = R3 = H, R = 816OH, (3 n): = 14 R1 = R3 = H, m = 14 O crambescidin 826 (13 ): crambescidinR1 = R = OH, 816R3 = ( 3H,): n = 14 crambescidinR1 = R3 = H, n826 = 16 (13 ): Rcrambescidin1 = R = OH, R3 830 = H, (4 n): = 14

R1 = R3 = H, n = 16 crambescidinR1 = R = OH, 830R3 = ( 4H,): n = 15 Rcrambescidin1 = R = OH, R3 844 = H, (5 n): = 15 crambescidinR1 = R = OH, 844R3 = ( 5H,): n = 16 Rmonanchomycalin1 = R = OH, R3 = H, Cn =(25 16):

monanchomycalinR1 = R = H, R3 = Et, C n ( =25 14):

R1 = R = H, R3 = Et, n = 14 Figure 3. Related (A) C-8 cycloheptanic spiro ring and (B) C-8 cyclopentanic spiro ring Figure 3. Related (A) C-8 cycloheptanic spiro ring and (B) C-8 cyclopentanic spiro ring Figurecrambescidin 3. Related-like GA.(A) C-8 cycloheptanic spiro ring and (B) C-8 cyclopentanic spiro ring crambescidin-like GA. crambescidin-like GA.

19 OH OH OH (R) O H O O H 43 N N N N 19 OH OH(S) NH2 O(HS) NH2 (R) O H O O H 43 N N O N NH2 N NN O N NH2 14 NH (S) NH H H (S) 2 H 14 2 O O O O N O N NH2 N O N NH2 14 H H H 14 O O O O 13,14,15-isocrambescidin 800 (6) Crambidine (7) 13,14,15-isocrambescidin 800 (6) Crambidine (7)

3 O H O 19 8 N N 15 3 H 19 O 10 N 13O 8 N N OH H 15 H 10 N 13 OH 16β-hydroxycrambescidinH H 359 (16) Figure16β-hydroxycrambescidin 4. Non-related crambescidin 359 -(like16) GA. Figure 4. Non-related crambescidin-like GA. Figure 4. Non-related crambescidin-like GA.

Mar. Drugs 2016, 14, 77 7 of 24 Mar. Drugs 2016, 14, 77 7 of 24 Mar. Drugs 2016, 14, 77 7 of 24 Compared to crambescidin-likecrambescidin-like GA, batzelladines batzelladines-like-like GA GA present present more more structural variations variations.. Structurally,Compared all ofof thetothe crambescidin batzelladinesbatzelladines-like shareshare GA, aa decahydro-batzelladinesdecahydro- oror-like octahydro-5,6,8b-triazaacenaphthaleneoctahydro GA present-5,6,8b more-triazaacenaphthalene structural variations . coreStructurally, with different all degreesof the batzelladines ofof oxidation.oxidation. share Batzelladines a decahydro A A–I–I -( 26or– octahydro34)) all possess -5,6,8b at - triazaacenaphthalene least one tricyclic guanidinecore with corecore different thatthat contains contains degrees either either of oxidation. a syna synor oranti Batzelladinesantistereo stereo relationship relationship A–I (26 of–34 the of) all angularthe possess angular hydrogens at hydrogens least thatone flanktricyclicthat theflankguanidine pyrrolidine the pyrrolidine core nitrogen that nitrogen contains [76]. To [7 this,6either]. To tricyclic thisa syn, tricyclic or guanidine anti guanidinestereo core relationship are core connected, are connected,of the through angular through an esterhydrogens an linkage, ester that andlinkaflank additionalge, andthe pyrrolidineadditional guanidine guanidine nitrogen fragments [7 fragments6] of. To varying this of, tricyclic varying complexity. guanidinecomplexity. Batzelladines core Batzelladines are connected, F (31), F G (31 (32 through),), G and (32), Lan and (38 ester) allL (38linka possess) allge, possess anand additional additional an additional tricyclic guanidine tricyclic hydroxy-guanidine fragments hydroxy -ofguanidine varying fragment, complexity.fragment, while while theBatzelladines simplestthe simplest members F ( 31members), G of(32 the), of and family,theL family, (38 batzelladines) all batzelladines possess an C additional (28 C), ( D28 (),29 D ),tricyclic ( and29), Eand (hydroxy30 ),E possess(30),- guanidineposse a commonss a commonfragment, 4-guanidino-butyl 4 while-guanidino the simplest-butyl unit. The unit.members more The of complexmorethe complex family, batzelladines, batzelladinesbatzelladines A (26 ,C) andA (28 (26), B )D (27and (29), are),B and( attached27) ,E are (30 attached), to posse an analoguess to a ancommon analogue of crambescin 4-guanidino of crambescin A (54-butyl) (Figure Aunit. (545). )The Batzelladines(Figuremore 5). complex Batzelladines F (31 batzelladines) and JF (36 (31) are) ,and A composed ( 26J ()36 and) are ofB composed( two27), 5,6,6a-triaza-acenaphthaleneare attached of two 5,6,6ato an -analoguetriaza-acenaphthalene coresof crambescin linked viacores A an ( 54) aliphaticlinked(Figure via chain. an5). aliphatic Batzelladines chain. F (31) and J (36) are composed of two 5,6,6a-triaza-acenaphthalene cores linkedThe structuresvia an aliphatic of several chain. members of the batzelladines have been revised since their original isolation.The The The structures originally originally of proposed proposedseveral members structures structures of thewere were batzelladines based on chemical have been degradationdegradation revised since studies, their NMRoriginal spectroscopyisolation. Theanalysis originally (1D and proposed 2D), and structures comparison were of based the data on tochemical previouslypreviously degradation reported studies, polycyclic NMR guanidinespectroscopy suchsuch as analysisas ptilomycalin ptilomycalin (1D and A ( 12D),).A Since( 1and). theSince comparison original the original isolation of the data work,isolation to the pre structureswork,viously the reported of structures batzelladines polycyclic of A(batzelladines26guanidine), D (29), A Esuch ( 2630), as andD (29ptilomycalin F), ( 31E )(30 have), and allA F been ((131). ) revised haveSince allthe to been their original revised current isolation to structures their currentwork, after structuresthe their structures partial after or of totaltheirbatzelladines synthesispartial or [ 27total A– 30(26 synthesis,35), ,D39 ].(29 As), [27 E a consequence(–3030,35,39]), and F. As(31 of )a thesehave consequence reassignments,all been revisedof these the to reassignments, relativetheir current stereochemistry structuresthe relative ofafter stereochemistrybatzelladinestheir partial G or(of32 total),batzelladines H (33synthesis), and IG ([27 34(32)–), has30,35,39] H been(33), .and reexaminedAs Ia (consequence34) has [30 been]. reexaminedof these reassignments, [30]. the relative stereochemistryThe current structures of batzelladines of 22 related G (32 batzelladine-likebatzelladine), H (33), and-like I (34 GAGA) has areare been summarizedsummarized reexamined inin FigureFigure [30]. 6 6.. OtherThe batzella batzelladine-like currentdine structures-like GA of have22 related been batzelladineisolated isolated such such-like as as GAbatzelladine batzelladine are summarized C C ( (2828)),, Kin K ( (Figure3737)),, and and 6. E E ( (3030));; dehydrobatzelladineOther batzella Cdine (35);)-;like clathriadic GA have acid been ((41 );isolated); and batzellamidebatzellamide such as batzelladine AA ((5050)) (Figure(Figure C (287 7).).), K (37), and E (30); dehydrobatzelladine C (35); clathriadic acid (41); and batzellamide A (50) (Figure 7). NH O O NH NHNH2 O O 8 NH NH2 HN N 8 NHHN N crambescinNH A (54) crambescin A (54) Figure 5. Crambescin A ( 54). Figure 5. Crambescin A (54). A R O A 1 H H R2 O R O N n 1 H H R2 O N N N m n H RN N m = H NH R2 N N R O O = N NHNH2 R N N N H 3 H 2 = O O H H R2 N NH N 3 2 HN HN H = H H R2 batzelladine F (31): NHHN N NH = R1 =batzelladine CH3, R = H, F n ( =31 7,): m = 6 R2 batzelladine A NH(26): N NHNH2 =H batzelladineR1 = CH3, GR =(32 H,): n = 7, m = 6 R2 batzelladine A (26): N NH2 R1 = H, n = 8, m = 8 batzelladine DH (29): R1 =batzelladine CH3, R = OH, G (n32 = ):7, m = 8 R1 = H, n = 8, m = 8 norbatzelladine A (44): R1 =batzelladine H, m = 7, n =D 3 (29): batzelladineR1 = CH3, RL (=38 OH,): n = 7, m = 8 R1 =norbatzelladine H, n = 8, m = 7 A (44): R1 = H, m = 7, n = 3 R1 =batzelladine CH3, R = H, L n (=38 7,): m = 8 dinorbatzelladineR1 = H, n = 8, m A= 7(46 ): norbatzelladineR1 = CH3, R = LH, (45 n ):= 7, m = 8 R1 =dinorbatzelladine H, n = 8, m = 6 A (46): R1 =norbatzelladine CH3, R = H, n = L 7 ,( 45m ):= 7 R1 = H, n = 8, m = 6 R1 = CH3, R = H, n = 7, m = 7 Figure 6. Cont. Figure 6. Cont. Figure 6. Cont.

Mar. Drugs 2016, 14, 77 8 of 24 Mar. Drugs 2016, 14, 77 8 of 24

B R O 1 H R2 n O N N N H 6 = H R2 N N H R = N N 2 NH N N O H H N NH2 H 3 H O batzelladine M (39): R1 = H, n = 6 batzelladine J (36): R1 = H, n = 6 batzelladine N (40): R1 = CH3, n = 7

C O H

R1 O N

R2 N N H n NH O O OH OH NH N NH2 H 3H N N N N = = = = R1 R1 6 R1 6 R1 N NH2 6 N N H HN N H H H H Dihomodehydro- NH batzelladine H (33): batzelladine I (34): batzelladine C (49): dinordehydro- R2 = CH3, n = 6 R2 = CH3, n = 6 R2 = C5H11, n = 8 batzelladine B (48): R2 = CH3, n = 6 D E NH H H N N NH O H H R N N n O N H H H H n H N N 2 O O N N 3 H 5 NH merobatzelladine A (42): R = , n = 5 batzelladine B (27): n = 8 merobatzelladine B (43): R = Et, n = 3 dinorbatzelladine B (47): n = 6

F O H H H N N 2 O N NH N N R H H OH hemibatzelladine J (51): R = OH Δ19-hemibatzelladine J (52): R =

Δ20-hemibatzelladine J (53): R = OH

FigureFigure 6. 6.Related Related batzelladine-like batzelladine-like GA GA with with different different right-handed right-handed tricycles. tricycles.

Mar. Drugs 2016, 14, 77 9 of 24 Mar. Drugs 2016, 14, 77 9 of 24

O O O H H H H H H H H N N H2N N H N N 2 O N O N 2 O N NH NH NH N N N N N N Mar. Drugs 2016, 14, 77 H 5 H 95 of 24

batzelladineO C (28) batzelladineO E (30) dehydrobatzelladineO C (35) H H H H H H H H N N H2N N H N N 2 O N O N 2 O N H H H NH NH N N NHN O N N N 5 N N H N N H H 5 H 5 N OH N N N N O N 4 H H H 7 H O batzelladine C (28) batzelladine E (30 ) dehydrobatzelladineN NC (35O ) batzelladine K (37) clathriadic acid (41) batzellamide A (50) H H H N N N O N 5 H H Figure 7. Unrelated batzelladineN OH -like GA. N N O N N N Figure 7. Unrelated batzelladine-like GA. 4 H H H 7 H O N N O In summary, the structurally unique tricyclic guanidinium ring system batzelladine K (37) clathriadic acid (41) batzellamide A (50) In(hydro summary,-5,6,6atriazaacenapthalene) the structurally that defines unique this class of tricyclic natural products guanidinium can be found in ring over 53 system (hydro-5,6,6atriazaacenapthalene)different alkaloids. While each Figureof that these 7. definesUnrelated natural products thisbatzelladine class share- oflike this naturalGA. common products structural can motif, be foundthe in over 53substituents different alkaloids.around the Whiletricyclic each core ofof thesethese naturalmolecules products leads to sharea significant this common structural structural diversity, motif, the substituentswhichIn relatesummary, around to a wide the-rangethe tricyclic of structurallybiological core of properties. these unique molecules For instance,tricyclic leads a large toguanidinium a significantnumber of these structuralring molecules system diversity, including batzelladine F (31) and ptilomycalin A (1) feature esters that tether the tricyclic core to a which(hydro relate-5,6,6atria to a wide-rangezaacenapthalene) of biological that defines properties. this class For of instance, natural products a large number can be found of these in over molecules 53 differentdiverse array alkaloids. of different While functional each of these groups, natural including products other share tricyclic this guanidine common subunits.structural The motif, other the including batzelladine F (31) and ptilomycalin A (1) feature esters that tether the tricyclic core to a substituentsarea of structural around diversity the tricyclic within core this of family these ofmolecules alkaloids leads is both to thea sign C1ificant and the structural C8 alkyl diversity, chains, diversewhichwhich array relatevary of differentinto termsa wide of- functionalrange length, of biologicalunits groups, of unsaturation, properties. including For and other instance, oxidation. tricyclic a large Remote guanidine number oxidation of subunits. these of themolecules alkyl The other area ofincludingbranches structural batzelladineis characteristic diversity F ( within31 )of and the thisptilomycalin crambescidin familyof A alkaloids(1alkaloids,) feature isestersincluding both that the tetherptilomycalin C1 and the tricyclic the A C8 ( 1 alkylcore) and to chains, a whichdiversecrambescidin vary inarray terms of359 different of(11 length,), which functionalunits feature of groups, two unsaturation, spirocyclic including hemiaminals and other oxidation. tricyclic as well guanidine Remote as the tricyclicsubunits. oxidation guanidine The of other the alkyl branchesareaframework. isof characteristic structural In addition diversity of theto structuralwithin crambescidin this diversity, family alkaloids, of batzelladines alkaloids including is -likebothptilomycalin GA the andC1 andcrambescidins the A ( 1C8) and alkyl-like crambescidin chains, GA 359 (11whichalkaloids), which vary feature featurein terms different twoof length, spirocyclic stereochemical units of hemiaminals unsaturation, configurations asand wellof oxidation. the as tricyclic the Remote tricyclic core. oxidationBoth guanidine the transof the framework.- andalkyl In additionbranchescis-configurations to structuralis characteristic of diversity,the pyrrolidine of batzelladines-likethe crambescidinsubunit have beenalkaloids, GA andreported crambescidins-like including in this classptilomycalin of natural GA alkaloids Aproducts. (1) and feature Batzelladine F (31) highlights this stereochemical diversity as it contains two distinct tricyclic differentcrambescidin stereochemical 359 (11), configurations which feature two of spirocyclic the tricyclic hemiaminals core. Both as the welltrans as the- and tricycliccis-configurations guanidine framework.guanidine subunits, In addition with to each structural featuring diversity, one of thebatzelladines pyrrolidine-like configurations. GA and crambescidins The stereochemical-like GA of the pyrrolidine subunit have been reported in this class of natural products. Batzelladine F (31) alkaloidsdiversity isfeature generally different limited stereochemical to the configuration configurations of the pyrrolidine of the tricyclic unit, as allcore. of theBoth alkaloids the trans in -this and highlights this stereochemical diversity as it contains two distinct tricyclic guanidine subunits, with cisclass-configurations feature a trans of relationshipthe pyrrolidine between subunit the haveC4 (and/or been reportedC6) proton in andthis theclass C1 of (and/or natural C8) products. alkyl eachBatzelladine featuringchain, with onethe F exception(31 of) thehighlights pyrrolidine of mero thisbatzelladines stereochemical configurations. A (42 ) diversityand TheB (43 ). stereochemicalas Both it contains natural productstwo diversity distinct feature istricyclic a generally cis limitedguanidinerelationship to the configurationsubunits, between with the C6 each of proton the featuring pyrrolidine and the one C8 of alkyl unit,the chain.pyrrolidine as all of configurations. the alkaloids inThe this stereochemical class feature a trans diversityrelationship is generally between limited the C4to the (and/or configuration C6) proton of the andpyrrolidine the C1 unit, (and/or as all C8)of the alkyl alkaloids chain, in withthis the 2.2. TGA Classification exceptionclass feature of merobatzelladines a trans relationship A (between42) and the B ( 43C4). (and/or Both naturalC6) proton products and the feature C1 (and/or a cis C8)relationship alkyl betweenchain, theDifferent with C6 protonthe guanidine exception and the alkaloidsof mero C8 alkylbatzelladines classifications chain. A can (42 )be and made, B (43 and). Both, as such, natural Santos products et al. (2015) feature have a cis relationshipdescribed four between GA chemotypes the C6 proton [70] and. The the first C8 class alkyl is chain. constituted of a monocyclic pyrimidinamine 2.2. TGAskeleton, Classification for example, crambescin C1 (55) or the bicyclic cyclopentapyrimidinamine skeleton, such 2.2.as crambineTGA Classification A (56) (Figure 8). The second one is a tricyclic triazaacenaphthylene skeleton, which Differentonly contains guanidine one guanidine alkaloids moiety classifications like crambescidins can be, and made, the third and, one as such,possess Santos the sameet al. skeleton(2015) have Different guanidine alkaloids classifications can be made, and, as such, Santos et al. (2015) have describedas for four class GA2, but chemotypes contains, at [least,70]. Theone more first guanidine class is constituted moiety, as can of abe monocyclic seen in the case pyrimidinamine of most described four GA chemotypes [70]. The first class is constituted of a monocyclic pyrimidinamine skeleton,batzelladines for example,. The fourth crambescin one is a C1tricyclic (55) orcyclopentaquinazolinamine the bicyclic cyclopentapyrimidinamine skeleton like netamine skeleton, M (57) such skeleton, for example, crambescin C1 (55) or the bicyclic cyclopentapyrimidinamine skeleton, such or ptilocaulin (58). as crambineas crambine A (56 A) ( (Figure56) (Figure8). 8). The The second second one one is is a a tricyclic tricyclic triazaacenaphthylenetriazaacenaphthylene skeleton, skeleton, which which only contains one guanidine moiety like crambescidins, and the third one possess the same skeleton only containsA one guanidine moietyB like crambescidinsC , and the third one possessD the same skeleton as foras class for class 2, but 2, but contains, contains,NH2 at at least, least, one NHone2 more more guanidineguanidine moiety moiety,, as as can can be beseen seen in the in thecase case of most of most batzelladines.batzelladines The. The fourthHN fourthN one one is is a tricyclica tricyclicN N cyclopentaquinazolinamine cyclopentaquinazolinamineNH2 skeleton skeleton NHlike like netamine netamine M (57 M) (57) C H or ptilocaulinor ptilocaulinHO (58). (58). C8H17 10 21 HN N HN NH

O O O O NH2 H A B N NH C D 2 NH N NH NH2 52 H NH NH crambescinHN NC1 (55) crambineN N A (56) netamine2 M (57) ptilocaulinNH (58) C H HO C8H17 10 21 HN N HN NH Figure 8. (A) Crambescin C1 (55); (B) crambine A (56); (C) netamine M (57); and (D) ptilocaulin (58). O O O O NH2 H N NH2 N NH 5 H NH crambescin C1 (55) crambine A (56) netamine M (57) ptilocaulin (58)

Figure 8. (A) Crambescin C1 (55); (B) crambine A (56); (C) netamine M (57); and (D) ptilocaulin (58). Figure 8. (A) Crambescin C1 (55); (B) crambine A (56); (C) netamine M (57); and (D) ptilocaulin (58).

Mar. Drugs 2016, 14, 77 10 of 24

Mar. Mar.DrugsMar.Mar. Drugs Drugs201 Drugs6,2016 12014 ,201 77,614, 16,4, ,1 77774, 77 10 of 102410 of 10of 24 24of 24 Another classification can be made with the same first, second and fourth classes, and a modifiedAnotherAnother Anotherthird classification class classification classification describing can becan pentacyclic can made be be made withmade triazaacenaphthylene with thewith samethe the same first,same first, secondfirst, skeletons second second and likeandfourth and crambescidins fourth fourthclasses, classes, classes, and (1 –anda2 5and) a a modified(Tablemodifiedmodified Another 3).third third class third classification classdescribing class describing describing can pentacyclic be pentacyclic made pentacyclic triazaacenaphthylene with triazaacenaphthylene the triazaacenaphthylene same first, second skeletons skeletons and skeletons fourthlike crambescidins like classes,like crambescidins crambescidins anda (1 modified–25 ()1 –(12–52) 5) (Tablethird(Table (Table3).Without class 3). 3). describing taking into pentacyclic account any triazaacenaphthylene genus revision made, skeletons some like observations crambescidins may (1 –be25 outlined.) (Table3). AccordingWithoutWithoutWithoutWithout totaking the takingtaking data takinginto reported, intointoaccount into accountaccount account Monanchoraany anygenusany any genusgenus genusisrevision the revisionrevision most revision made, studied made,made, made,some genus somesome observationssome (Tables observationsobservations observations 1 andmay 2). maymaybe maySome outlined. bebe be outlined.speciesoutlined. outlined. AccordingseemAccordingAccordingAccording to produceto the to to data the tothe both the data datareported, data the reported, reported, crambescidinsreported, MonanchoraMonanchora Monanchora Monanchora andis the isbatzelladines is most the isthe the most most studied most studied studied classesstudied genus genus genus as (Tablesgenus is (Tables illustrated(Tables (Tables 1 and1 1and 2). and1 with and 2Some). 2). Some 2).Monanchora Some species Some species species species seemunguiferaseemseem toseem produce to to, produce towhichproduce produce both produces both boththe both thecrambescidins the the16 crambescidins crambescidinsβ -crambescidinshydroxycrambescidin and and batzelladinesand and batzelladines batzelladines batzelladines (16 )classes, crambescidic classes classes classesas is as asillustrated isas isacid illustrated isillustrated illustrated (15 with) and with withMonanchora batzelladines withMonanchora Monanchora Monanchora unguiferaJ–unguiferaLunguifera (unguifera36,– which38,) , which (Tableswhich, whichproduces produces produces1 producesand 16 2).β 16- hydroxycrambescidinOther16β -hydroxycrambescidin16β-βhydroxycrambescidin- hydroxycrambescidingenera seem to (produce16 (16), (),crambescidic16 ( crambescidic16), only)crambescidic, crambescidic one acidTGA acid acid( 15family. (15acid) )and( and15 (15) Forbatzelladinesand batzelladines) and example, batzelladines batzelladines to J–L J–Ldate, ((36J–LJ– –Batzella38 L(36 ))( 36 (Tables–(Tables38–38 )sp. (Tables) (Tables1 was1 and and only 21). 2).and1 Other andshown Other 2). 2). generaOther togeneraOther produce genera seem generaseem tobatzelladines seem to produceseem produce to toproduce produce only Aonly–I one ( only26one only– TGA34 TGAone) . one family. TGA family. TGA family. For family. For example, example,For For example, example, to date,to to to date,Batzelladate, Batzelladate,Interestingly, Batzellasp. Batzella sp. was was sp. onlysp. onlywasa waschemotaxonomic shown onlyshown only shown to shownto produce produce to to producestudy produce batzelladines batzelladines suggested batzelladines batzelladines A–I A that– (I26 (A26 –the –34A–I34 –).( I26biogenetically )(.26 –34–34). ). related guanidine alkaloidsInterestingly,Interestingly,Interestingly, Interestingly,isolated a fromchemotaxonomic aa chemotaxonomic Crambeachemotaxonomic chemotaxonomic crambe study, Monanchora studystudy suggestedstudy suggestedsuggested arbusculasuggested that that,that thePtilocaulis that thebiogeneticallythe the biogeneticallybiogenetically spiculiferbiogenetically ,related and relatedrelated Hemimycale related guanidine guanidineguanidine guanidine sp., alkaloidsshouldalkaloidsalkaloidsalkaloids isolatedeventually isolatedisolated isolated from be from Crambeunited from Crambe Crambe crambein a singlecrambe crambe ,crambe Monanchora genus,, ,MonanchoraMonanchora, Monanchora preferentially arbuscula arbuscula arbusculaarbuscula, Ptilocaulis Crambe, Ptilocaulis,, PtilocaulisPtilocaulis [53]spiculifer. spiculifer spiculifer , and, Hemimycaleand,, and and Hemimycale HemimycaleHemimycale sp., sp., sp., shouldsp.,shouldshould eventually should eventually eventually eventually be united be be united be unitedin united a singlein ina in singlea a genus,single single genus, genus,preferentially genus, preferentially preferentially preferentially Crambe Crambe Crambe Crambe[53]. [53] [53][53. .]. Table 3. GA classes. Table 3. GA classes. No Class 1 ClassTable 2 Table 3.Table GA 3. classes. GA3. GA classes.Class classes. 3 Class 4 Ref.

No NoNo ClassClass Class 1Class 11 1Class Class 2Class Class 2 22 Class ClassHClass 3Class 3 3 3 Class ClassClassNH 44Class 4Ref. 4 Ref. Ref.Ref. NH H N N 2 N N HNNH NHNH H H H H HNNH NNHNH H H H N NNN N N N 1 2 2 2 N NNN N N N HN HNNHHN NHNH [70] N N N H H H 1 11 1 HN HNNHN N N [70][ 70[70]][70] N N N +1 or more guanidine moiety H

+ 1 or + more1+ or1 or more guanidine +1more or guanidine more guanidine moiety moiety moiety guanidine moiety AcanthellaH H H Clathria AcanthellaArenochalina Batzella CrambeClathria AcanthellaAcanthellaAcanthella ClathriaClathriaClathria ArenochalinaBatzella Batzella Crambe ArenochalinaArenochalinaArenochalina BatzellaCrambeBatzellaBatzella CrambeHemimycaleCrambeCrambe Batzella Batzella Sponges * Crambe Hemimycale Batzella BatzellaBiemnaBatzellaBatzella - Sponges * Pseudaxinella Monanchora Monanchora Biemna - CrambePseudaxinellaCrambeCrambe Hemimycale HemimycaleHemimycaleMonanchora BatzellaMonanchoraBatzellaBatzella Clathria SpongesSpongesSponges * * * BiemnaClathriaBiemnaBiemna - - - Pseudaxinella(PtilocaulisPseudaxinella(PtilocaulisPseudaxinella ) Monanchora) Neofolitispa MonanchoraMonanchoraNeofolitispa MonanchoraMonanchoraMonanchora MonanchoraClathriaMonanchoraClathriaClathria (Ptilocaulis(Ptilocaulis(Ptilocaulis) Neofolitispa) )Ptilocaulis NeofolitispaNeofolitispaPtilocaulis MonanchoraPtilocaulisPtilocaulisMonanchoraMonanchora PtilocaulisPtilocaulisPtilocaulis NH O H O PtilocaulisPtilocaulisPtilocaulis NH H N N 2 N N HNNH NHNH O nH O OHOH O O H 2 HNNH NNHNH H H H N NNN N N N - 2 2 2 2 N NNN N N N HN HNNHHN NHNH - H H H n nN n N N 2 2 2 HN HNNHN N N N N N - - - n =n 1= or1 or 3 3 H

n = 1 nor =n 3 1= or1 or 3 3 AcanthellaAcanthellaH H H Crambe Arenochalina Batzella Crambe Arenochalina Batzella Hemimycale AcanthellaBatzellaAcanthellaAcanthella BatzellaCrambe Sponges * BatzellaClathria HemimycaleMonanchoraCrambe BiemnaArenochalinaBatzella - CrambePseudaxinella CrambeCrambe ArenochalinaArenochalina Sponges * BatzellaBatzellaBatzella ClathriaMonanchora MonanchoraNeofolitispa ClathriaBiemna - (Ptilocaulis) BatzellaBatzellaBatzella HemimycaleHemimycaleHemimycale BatzellaBatzellaBatzella PseudaxinellaCrambeCrambeCrambe Ptilocaulis Monanchora SpongesSpongesSponges * * * ClathriaMonanchoraClathriaClathria MonanchoraNeofolitispaMonanchoraMonanchora BiemnaClathriaBiemnaBiemna - - - Pseudaxinella(PtilocaulisPseudaxinellaPseudaxinella ) Ptilocaulis MonanchoraMonanchoraMonanchora NeofolitispaPtilocaulisNeofolitispaNeofolitispa ClathriaMonanchoraClathriaClathria (Ptilocaulis(Ptilocaulis(Ptilocaulis) ) ) * Sponges without any genus revision made. PtilocaulisPtilocaulisPtilocaulis MonanchoraPtilocaulisMonanchoraMonanchora * Sponges without any genus revision made. PtilocaulisPtilocaulisPtilocaulis 2.3. Analytical Tools for TGA* Sponges Structural* Sponges* Sponges without Analysis without without any genus any any genus revision genus revision revision made made. made. . 2.3. Analytical Tools for TGA Structural Analysis TGA structural determinations have been accomplished based on extensive NMR (1D and 2D) 2.3. Analytical2.3.2.3.TGA Analytical Analytical structural Tools Tools for Tools TGAdeterminations for for TGAStructural TGA Structural Structural Analysis have Analysis beenAnalysis accomplished based on extensive NMR (1D and 2D) and MS analyses, and chemical degradation. and MS analyses, and chemical degradation. TGATheTGA structuralTGA following structural structural determinations sectiondeterminations determinations is ahave guideline have been have beenaccomplished been for accomplished the accomplished structure based based determination onbased extensive on on extensive extensive NMR of NMR crambescidin- (1DNMR and(1D (1D 2D)and and 2D) or 2D) The following section is a guideline for the structure determination of crambescidin- or and batzelladine-likeMSandand analyses, MS MS analyses, analyses, and GA chemicaland derivativesand chemical chemical degradation. bydegradation. degradation. their characteristic fragments via the use of NMR and MS analyses. batzelladineThe ThefollowingThe following-like following GAsection derivativessection section is a isguideline isaby aguideline theirguideline for characteristic thefor for structurethe the structure structurefragments determination determination determinationvia the ofuse crambescidin ofof of crambescidinNMR crambescidin and- or MS - or- or batzelladineanalyses.2.3.1.batzelladinebatzelladine NMR -like Spectroscopy -GAlike-like derivativesGA GA derivatives derivatives by their by by their characteristictheir characteristic characteristic fragments fragments fragments via thevia via usethe the ofuse useNMR of ofNMR andNMR andMS and MS MS analyses. analyses.analyses. TGA NMR spectra have a high content of information. Due to the relative signal richness, the

1 H– 1H COSY experiment is appropriate in helping to find whether one or another TGA class is present

Mar.Mar. Drugs Drugs 201 2016, 164,, 1774, 77 11 of11 24 of 24

2.3.1.2.3.1. NMR NMR Spectroscopy Spectroscopy Mar. Drugs 2016, 14, 77 11 of 24 TGATGA NMR NMR spectra spectra have have a higha high content content of ofinformation. information. Due Due to tothe the relative relative signal signal richness, richness, the the 1 1 H1–HH–1 HCOSY COSY experiment experiment is isappropriate appropriate in inhelping helping to tofind find whether whether one one or oranother another TGA TGA class class is is bypresentpresent analyzing by by analyzing the analyzing NMR the spectra the NMR NMR between spectra spectra 0.8 between andbetween 5 ppm. 0.8 0.8 and Nonetheless, and 5 ppm.5 ppm. Nonetheless, several Nonetheless, characteristic several several characteristic signals characteristic from 1 differentsignalssignals from atoms from different different listed belowatoms atoms (Figurelisted listed below9 )below should (Figure (Figure be found9) should9) should in the be befound1H found NMR in thein spectra the H 1 NMRH (TableNMR spectra 4spectra). (Table (Table 4). 4).

A A B B 1 1 2 c 2 c b a 4 d b a 34 O H O d N 3 NO HN O N 5 N N 5 a Na N N N d N N b c d H b c H

FigureFigureFigure 9.9. Current 9. Current numbering numbering scheme scheme for:for for: (A: )( A C-8C)- 8C cycloheptanic-8 cycloheptanic spiro spiro ringring ring crambescidin-likecrambescidin crambescidin-like-like GA;GA GA; andand; and ((BB))( batzelladine-likeBbatzelladine) batzelladine-like-like GA.GA. GA.

TableTable 4.4. Characteristic Characteristic4. Characteristic TGATGA TGA signals.signals. signals.

AtomAtom Number Number CrambescidinCrambescidin-Like-Like GA GA Signals Signals Batzelladine Batzelladine-Like-Like GA GA Signals Signals Atom Number Crambescidin-Like GA Signals Batzelladine-Like GA Signals a H H * a * dddd from from 2.8 2.8 to to2.5 2.5 ppm ppm m mfrom from 2.8 2.8 to to2.5 2.5 ppm ppm Hba * dd from 2.8 to 2.5 ppm m from 2.8 to 2.5 ppm H H * b * m mfrom from 4.6 4.6 to to3.9 3.9 ppm ppm m mfrom from 4.6 4.6 to to3.9 3.9 ppm ppm Hb * m from 4.6 to 3.9 ppm m from 4.6 to 3.9 ppm Hc * dt toward 4.3 ppm m toward 4.3 ppm HcH*c * dt towarddt toward 4.3 ppm4.3 ppm m towardm toward 4.3 ppm 4.3 ppm Hd * d from 3.5 to 2.9 ppm dd from 3.5 to 2.9 ppm HdH*d * d fromd from 3.5 to3.5 2.9 to ppm 2.9 ppm dd fromdd from 3.5 to 3.5 2.9 to ppm 2.9 ppm 4 5 HHH 4* 4*et * et Het H H 5** 5double double* double bond bond 2 m2 towardmtoward toward 5.5 5.5 ppm5.5 ppm ppm NoNo signalNo signal signal *: *:for*: for for a, a, b,a, b, c,b, c, d, c, 44d, andand 4 and 5 5 attributions, attributions 5 attributions see, see above;, see above above d, doublet;; d,; doubletd, doublet dd, doublet; dd; ,dd doublet, ofdoublet doublets; of ofdoublets dt,doublets doublet; dt; , dtofdoublet, triplets; doublet of of m, multiplet. tripletstriplets; m;, mmultiplet, multiplet. .

CrambescidinCrambescidinCrambescidin Case:Case Case: Ptilomycalin: Ptilomycalin AA ((A11)) ( 1) AsAsAs anan an example,example, example, wewe we choosechoose choose ptilomycalinptilomycalin ptilomycalin AA( (A11),) (, 1whichwhich), which isis part partis part ofof theofthe the pentacyclicpentacyclic pentacyclic TGATGA TGA class.class. class. First of all, the H1 signal (triplet) and the H4 and H5 signals of the double bond are very FirstFirst of of all, all, the the H 1Hsignal1 signal (triplet) (triplet) and and the the H 4Hand4 and H 5Hsignals5 signals of of the the double double bond bond are are very very characteristic. There are also clear correlations from H1 to H5, and finally, the NMR chemical shifts of characteristic.characteristic. There There are are also also clear clear correlations correlations from from H1 Hto1 Hto5 H, and5, and finally, finally, the the NMR NMR chemical chemical shifts shifts of of Ha, Hb, Hc, and Hd are also very characteristic within the crambescidin family (Figure 10) (Table 4). HaH,Ha,b, HHb, c,Handc, and H Hd ared are also also very very characteristic characteristic within within the the crambescidin crambescidin family family (Figure (Figure 10 10)) (Table (Table4). 4).

A A

Figure 10. Cont.

Mar. Drugs 2016, 14, 77 12 of 24 Mar. Drugs 2016, 14, 77 12 of 24

Mar. Drugs 2016, 14, 77 B 12 of 24 2 1 4 3 O H O B 5 N N 2 1 NH2 4 d a N O N NH2 c 3 b 14 5 O H O N N O O NH2 d a N O N NH2 c ptilomycalin A (1) b 14 O O 1 1 Figure 10. (A) Ptilomycalin1 1 ptilomycalin A (1) H- H ACOSY ( ) NMR spectrum in CD3OD (personal data); and (B) Figure 10. (A) Ptilomycalin A (1) H- H COSY NMR spectrum1 in CD3OD (personal data); and (B) labeled ptilomycalin A (1). labeledFigure ptilomycalin 10. (A) Ptilomycalin A (1). A (1) 1H-1H COSY NMR spectrum in CD3OD (personal data); and (B) labeled ptilomycalin A (1). Batzelladine Case: Batzelladine F (31) Batzelladine Case: Batzelladine F (31) Batzelladine CaseIn general,: Batzelladine all the F (NMR31) signals reported in Table 4 are more shielded in batzelladines than in In general, all the NMR signals reported in Table4 are more shielded in batzelladines than In general,crambescidins all the NMR. Moreover, signals reported the NMR in Tablespectra 4 are are more more shielded complex in batzelladinesand are often than different in since the in crambescidins. Moreover, the NMR spectra are more complex and are often different since the crambescidinsguanidinium. Moreover, core the can NMR be once spectra or more are more dehydrogenat complex ed.and are often different since the guanidinium core can be once or more dehydrogenated. guanidinium coreWithin can thebe once tricyclic or more TGA dehydrogenat class 2, we useded. the example of batzelladine F (31). WithinWithin the tricyclictheThe tricyclic major TGA TGA difference class class 2, 2, we webetween used used thethe batzelladine exampleexample of of Fbatzelladine batzelladineand ptilomycalin F ( F31 ().31 ).A spectra is the absence of the The majorThe signalsmajor difference difference for the between protonsbetween batzelladine batzelladineH4 and H5, Fand and the ptilomycalin ptilomycalin corresponding A Aspectr spectra correlation.a is the is theabsence On absence theof theother of the hand, two signalssignals for theforcorrelations protonsthe protons H are4 Hand very4 and H characteristic 5H,5 and, and the the corresponding withincorresponding batzelladines correlation. correlation.: Ha with On OnHtheb, and theother H other chand, with hand, Htwod (Figure two 11). correlationscorrelations are veryare very characteristic characteristic within within batzelladines: batzelladines: H Ha awithwith H Hb, andb, and Hc with Hc with Hd (Figure Hd (Figure 11). 11). A A

B B H H H H N O H H N d O N N O c N b a H H 5 d H N N O c N b a H N N5 H 8 N N batzelladine F (31) H 8 batzelladine F (31) 1 1 Figure 11. (A) Batzelladine F (131) 1H- H COSY NMR spectrum in CD3OD (adapted from Patil et al. Figure 11. (A) Batzelladine F (31) H- H COSY NMR spectrum in CD3OD (adapted from Patil et al. [67]); [67]); and (FigureB) labeled 11. batzelladine (A) Batzelladine F (31). F (31) 1H-1H COSY NMR spectrum in CD3OD (adapted from Patil et al. and (B) labeled batzelladine F (31). [67]); and (B) labeled batzelladine F (31). 2.3.2. Mass Spectrometry 2.3.2. Mass Spectrometry Several2.3.2. TGA Mass were Spectrometry detected by positive electrospray mass spectrometry ionization studies. SeveralUsually, TGAauthorsSeveral were notify detected TGAthe TGA were byquasi detected positive-molecular by electrospray ionpositive [M + H] electrospray+ masswith the spectrometry exception mass spectrometry of batzelladines ionization ionization studies.M studies. + 2+ Usually,(39) authors and NUsually, (40 notify), which authors the were TGA notify detected quasi-molecular the through TGA quasi their ion- moleculardicharged [M + H] ionionwith [M [M + the+ 2H] H] exception+ with[73]. Onthe the exception of batzelladinesother hand, of batzelladines M M (39) and N (40(),39 which) and N were (40), detected which were through detected their through dicharged their ion dicharged [M + 2H] ion2+ [M[73 +]. 2H] On2+ the [73 other]. On the hand, other hand, both quasi-molecular and discharged ions were observed for batzelladine L (38) and monanchomycalin C(25). Mass spectrometry data for TGA are summarized in Table5. Mar. Drugs 2016, 14, 77 13 of 24

Table 5. TGA Mass Spectrometry (MS) data.

Metabolites m/z ([M + H]+ Unless Specified) and ∆ppm Found Ref. ptilomycalin A (1) 977.7915 (1.0 mmu) for the bis(trifluoroacetyl) derivative [51] crambescidin 800 (2) 801.6205 (1.3 mmu) [55] crambescidin 816 (3) 817.6151 (1.6 mmu) [55] crambescidin 830 (4) 831.6300 (2.3 mmu) [55] crambescidin 844 (5) 845.6471 (0.9 mmu) [55] 13, 14, 15 -isocrambescidine 800 (6) 927.6521 (1.3 mmu) for the acetylated compound [52] crambidine (7) 967.6415 (6.8 mmu) for the acetylated compound [52] neofolitispate 1 (8) 686 (no HRMS data) [57] neofolitispate 2 (9) 672 (no HRMS data) [57] neofolitispate 3 (10) 658 (no HRMS data) [57] crambescidin 359 (11) 359.2567 (0.6 mmu) [53] crambescidin 431 (12) 431.2780 (0.4 mmu) [53] crambescidin 826 (13) 827.6389 (1.5 mmu) [54] crambescidin acid (14) 404.2541 (2.2 mmu) [58] crambescidic acid (15) 658.4781 (1.4 mmu) [59] 16β-hydroxycrambescidin 359 (16) 376.2617 (1.7 mmu) [73] ptilomycalin D (17) 627.4994 * [60] monanchocidin (A) (18) 859.6267 (3.0 mmu) [61] monanchocidin B (19) 831.5978 (3.4 mmu) [62] monanchocidin C (20) 845.6150 (4.0 mmu) [62] monanchocidin D (21) 831.5920 (3.4 mmu) [62] monanchocidin E (22) 845.6120 (1.0 mmu) [62] monanchomycalin A (23) 813.6574 (0.2 mmu) [63] monanchomycalin B (24) 785.6259 (0.4 mmu) [63] monanchomycalin C (25) 813.6578 (0.3 mmu) and [M + 2H]2+ 407.3336 (0.7 mmu) [64] batzelladine A (26) 768.5839 (2.4 mmu) [66] batzelladine B (27) 738.5356 (3.8 mmu) [66] batzelladine C (28) 489.3903 (1.4 mmu) [66] batzelladine D (29) 463.3740 ** [66] batzelladine E (30) 487.3728 (3.2 mmu) [66] batzelladine F (31) 624.5096 (0.6 mmu) [67] batzelladine G (32) 668,5353 (1.3 mmu) [67] batzelladine H (33) [67] 609.4488 (0.4 mmu) batzelladine I (34) [67] dehydrobatzelladine C (35) 487.3711 (4.9 mmu) [53] batzelladine J (36) 750.5361 (3.3 mmu) [59] batzelladine K (37) 250.2322 (3.9 mmu) [73] batzelladine L (38) 653.5458 (2.4 mmu) and [M + 2H]2+ 327.2798 (1.8 mmu) [73] batzelladine M (39) [M + 2H]2+ 298.2399 (1.0 mmu) [73] batzelladine N (40) [M + 2H]2+ 312.2546 (1.0 mmu) [73] clathriadic acid (41) 318.2173 (1.0 mmu) [68] merobatzelladine A (42) 360.3444 (6.6 mmu) [69] merobatzelladine B (43) 306.2909 (7.0 mmu) [69] norbatzelladine A (44) 754.5705 (0.7 mmu) [68] norbatzelladine L (45) 639.5327 (0.3 mmu) [68] dinorbatzelladine A (46) 740.5547 (0.9 mmu) [68] dinorbatzelladine B (47) 710.5074 (1.2 mmu) [68] dinordehydrobatzelladine B (48) 708.4919 (1.0 mmu) [68] dihomodehydrobatzelladine C (49) 515.4064 (1.3 mmu) [68] batzellamide A (50) 541.3878 (1.2 mmu) [70] hemibatzelladine J (51) 449.3238 (0.2 mmu) [70] ∆19-hemibatzelladine J (52) [70] 447.3092 (0.8 mmu) ∆200-hemibatzelladine J (53) [70] * Calculated m/z value: 626.4975; reported m/z value: 627.4994; ** not specified. Mar. Drugs 2016, 14, 77 14 of 24

Mar. Drugs 2016, 14, 77 14 of 24 Mar. Drugs 2016, 14, 77 14 of 24

Tandem mass spectrometry* Calculated m/z (MSvalue:²) 626.4975 experiments; reported m/z were value: also 627.4994 performed; ** not specified to confirm. a hypothesis or * Calculated m/z value: 626.4975; reported m/z value: 627.4994; ** not specified. provide additional information concerning the TGA side chains, as reported in Table6. Tandem mass spectrometry (MS²) experiments were also performed to confirm a hypothesis or Tandem mass spectrometry (MS²) experiments were also performed to confirm a hypothesis or provide additional information concerning the TGA side chains, as reported in Table 6. provide additional information concerning the TGA side chains, as reported in Table 6. Table 6. Characteristic MS2 TGA signals. Table 6. Characteristic MS2 TGA signals. Table 6. Characteristic MS2 TGA signals. m/z Fragmentm/z Fragmentm/z Fragmentm/z Fragment Loss Loss FragmentFragment Ref. Ref. m/z Fragment m/z Fragment Loss Fragment Ref. 358 (or 359)358 (or 359) CrambescidinCrambescidin core core [53–55,59 [53] –55,59] 358 (or 359) Crambescidin core [53–55,59] 322 or 336 or 350 Batzelladine core + n = 6, 7 or 8 carbon side chain [53,66–68,73] 322 or 336322 or or 350 336 or 350 BatzelladineBatzelladine core core + +n n == 6, 7 or or 8 8 carbon carbon side side chain chain [53,66–[68,537,663] –68,73] NH NH 114 113 [53,59,66] 114114 113 113 N NH2 [53,59,66[53] ,59,66] HN NH2 H OH OH NH2 NH2 O N OH 101 101 N [61,62] [61,62] 101 O OH [61,62]

H2N H2N Intense 18Intense 18 17 17 Intense 18 17 CarboxylicCarboxylic acid acid - - Intense 48Intense 48 47 47 Carboxylic acid - Intense 48 47

3. Biological Activities 3. Biological3. Biological Activities Activities TGA exhibited a wide range of biological activities with mainly antiviral, antimicrobial TGA exhibited a wide range of biological activities with mainly antiviral, antimicrobial (including antifungal, antibacterial, anti-yeast, and antiparasitic), and antitumor properties. TGA(including exhibited antifungal, a wide range antibacterial, of biological anti-yeast, activities and antiparasitic), with mainly and antitumor antiviral, properties. antimicrobial (including antifungal, antibacterial, anti-yeast, and antiparasitic), and antitumor properties. 3.1. Antiviral Activities 3.1. Antiviral Activities Several TGA derivatives were evaluated for their antiviral activities against different viruses 3.1. Antiviral ActivitiesSeveral TGA derivatives were evaluated for their antiviral activities against different viruses such as Human immunodeficiency virus (HIV-1), Herpes simplex virus (HSV-1), and Human hepatitis such as Human immunodeficiency virus (HIV-1), Herpes simplex virus (HSV-1), and Human hepatitis SeveralB virus TGA (HBV). derivatives The reported were data evaluated for 17 TGA for are their summarized antiviral in Table activities 7. against different viruses such B virus (HBV). The reported data for 17 TGA are summarized in Table 7. as Human immunodeficiency virus (HIV-1), Herpes simplex virus (HSV-1), and Human hepatitis B virus Table 7. TGA antiviral activities. (HBV). The reported data for 17 TGA areTable summarized 7. TGA antiviral inactivities. Table 7. HIV-1 HIV-1 EC50 (µM Unless Specified) Human Envelope-Mediated gp120 Binding HSV-1 HBV Ref. EC50 (µM Unless Specified) Human Envelope-Mediated gp120 Binding HSV-1 HBV Ref. PBMCTable 7. TGAFusion antiviral activities.to CD4 PBMC Fusion to CD4 ptilomycalin A (1) 0.011 n.t. n.t. 0.25 * n.t. [51] ptilomycalin A (1) 0.011 n.t. n.t. 0.25 * n.t. [51] crambescidin 800 (2) 0.04 1–3 n.t. 1.25 µg/well a n.t. [54,55,73] crambescidin 800 (2) 0.04 1HIV-1–3 n.t. 1.25 µg/well a n.t. [54,55,73] EC50 (µM Unlesscrambescidin Specified) 816 (3) n.t. n.t. n.t. 1.25 µg/wellHSV-1 a n.t. HBV[55] Ref. crambescidin 816 (3) n.t. n.t. n.t. 1.25 µg/well a n.t. [55] crambescidin 844 (5) Humann.t. Envelope-Mediatedn.t. gp120n.t. Binding 1.25 µg/well a n.t. [55] crambescidin 844 (5) n.t. n.t. n.t. 1.25 µg/well a n.t. [55] 13,14,15-isocrambescidin 800 (6PBMC) n.t. Fusionn.t. ton.t. CD4 NA n.t. [56] 13,14,15-isocrambescidin 800 (6) n.t. n.t. n.t. NA n.t. [56] neofolitispate 1 (8) n.t. n.t. n.t. n.t. ptilomycalinneofolitispate A (1) 1 (8) 0.011n.t. n.t.n.t. n.t.n.t. n.t. 0.25 * n.t. [51] neofolitispate 2 (9) n.t. n.t. n.t. n.t. 7.4 ** [57] neofolitispate 2 (9) n.t. n.t. n.t. n.t. 7.4a ** [57] crambescidinneofolitispate 800 (2) 3 (10) 0.04n.t. 1–3n.t. n.t.n.t. 1.25n.t. µg/well n.t. [54,55,73] neofolitispate 3 (10) n.t. n.t. n.t. n.t. crambescidin 826 (13) n.t. 1–3 n.t. n.t. µ n.t.a [54] crambescidincrambescidin 816 (3 )826 (13) n.t.n.t. n.t.1–3 n.t.n.t. 1.25n.t. g/welln.t. n.t.[54] [55] batzelladine A (26) n.t. n.t. 29 n.t. n.t. [66] batzelladine A (26) n.t. n.t. 29 n.t.µ n.t.a [66] crambescidinbatzelladine 844 (5 )B (27) n.t.n.t. n.t.n.t. n.t.31 1.25n.t. g/welln.t. n.t.[66] [55] batzelladine B (27) n.t. n.t. 31 n.t. n.t. [66] 13,14,15-isocrambescidinbatzelladine 800C (28 (6) ) n.t.7.7 n.t.n.t. n.t.n.t. n.t. NAn.t. n.t.[73] [56] batzelladine C (28) 7.7 n.t. n.t. n.t. n.t. [73] batzelladine D (29) n.t. n.t. 72 n.t. n.t. [66] neofolitispatebatzelladine 1 (8) D (29) n.t.n.t. n.t.n.t. n.t.72 n.t. n.t. n.t. [66] dehydrobatzelladine C (35) 5.5 n.t. n.t. n.t. n.t. [73] dehydrobatzelladine C (35) 5.5 n.t. n.t. n.t. n.t. [73] [57] neofolitispatebatzelladine 2 (9) L (38) n.t.1.6 n.t.n.t. n.t.n.t. n.t. n.t. n.t. 7.4[ **73] batzelladine L (38) 1.6 n.t. n.t. n.t. n.t. [73] batzelladine M (39) 7.7 n.t. n.t. n.t. n.t. [73] neofolitispatebatzelladine 3 (10) M (39) n.t.7.7 n.t.n.t. n.t.n.t. n.t. n.t. n.t. [73] batzelladine N (40) 2.4 n.t. n.t. n.t. n.t. [73] batzelladine N (40) 2.4 n.t. n.t. n.t. n.t. [73] crambescidinHIV, Human 826 (13 immunodeficiency) n.t. virus; PBMC 1–3, Peripheral Blood n.t. Mononuclear cells; n.t. gp, glycoprotein n.t.; [54] HIV, Human immunodeficiency virus; PBMC, Peripheral Blood Mononuclear cells; gp, glycoprotein; batzelladineHSV, Herpes A (26) simplex virus; n.t. HBV, Human hepatitis n.t. B virus; n.t., not 29 tested, NA, not active n.t.; * converted n.t. [66] HSV, Herpes simplex virus; HBV, Human hepatitis B virus; n.t., not tested, NA, not active; * converted from µM to µg/mL; ** calculated from compound (9) molecular weight; a Diffuse cytotoxicity at 1.25 batzelladinefrom µM B ( 27to )µg/mL; ** calculated n.t. from compound n.t. (9) molecular 31 weight; a Diffuse cytotoxicity n.t. at n.t.1.25 [66] µg/well. batzelladineµg/well. C ( 28) 7.7 n.t. n.t. n.t. n.t. [73]

batzelladine D (29) n.t. n.t. 72 n.t. n.t. [66]

dehydrobatzelladine C (35) 5.5 n.t. n.t. n.t. n.t. [73] batzelladine L (38) 1.6 n.t. n.t. n.t. n.t. [73] batzelladine M (39) 7.7 n.t. n.t. n.t. n.t. [73] batzelladine N (40) 2.4 n.t. n.t. n.t. n.t. [73] HIV, Human immunodeficiency virus; PBMC, Peripheral Blood Mononuclear cells; gp, glycoprotein; HSV, Herpes simplex virus; HBV, Human hepatitis B virus; n.t., not tested, NA, not active; * converted from µM to µg/mL; ** calculated from compound (9) molecular weight; a Diffuse cytotoxicity at 1.25 µg/well. Mar. Drugs 2016, 14, 77 15 of 24

In general, crambescidin-like GA seem to be more efficient against HIV compared to batzelladine-like GA (half maximal effective concentration (EC50) around 1 mM [66,73]) with EC50 activities below 0.05 µM[51,73]. The stereochemistry of the molecule has a great influence on the antiviral activity. For example, 13,14,15-isocrambescidin (6) is not active against HSV-1 compared to crambescidins [56]. Ptilomycalin A (1) shows very potent anti-HIV-1 and anti-HSV-1 activities at a concentration of 0.011 and 0.25 µM, respectively [51], which makes it the best antiviral candidate. Surprisingly, neofolitispates (8–10) are the only crambescidin-like GA derivatives that have been tested on HBV and exhibited an anti-HBV activity [57]. Unfortunately, few details have been reported. On the other hand, batzelladines A–E (26–30) were shown to block the interaction between the surface of the HIV envelope glycoprotein gp120 and the extracellular domains of human CD4 receptor protein [77]. This binding is vital to the replication of the virus as it controls its entry into the human cells, since without access to the biochemical environment within the cell the virus is unable to replicate. As a consequence, batzelladines have a therapeutic interest in the treatment of HIV [76]. To date, batzelladine-like GA have not been tested against HSV or HBV viruses.

3.2. Antimicrobial Activities TGA derivatives were tested against several bacteria (Mycobacterium tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium intracellulare), yeast (Candida albicans), fungi (Cryptococcus neoformans and Aspergillus fumigatus), and parasites (Plasmodium falciparum, Tripanosoma cruzi, Leishmania infatum, and Trypanosoma brucei brucei). Table8 reports all the antimicrobial activity results for 19 TGA tested. Crambescidin 800 (2) and ptilomycalin A (1) exhibited potent activity against most bacteria, yeast, fungi, and parasites [68,73]. Curiously, they are poorly active on Mycobacterium intracellulare and are considered inactive on Mycobacterium tuberculosis (M. tuberculosis)[73]. Furthermore, 16β-hydroxycrambescidin (16), the only crambescidin-like GA bearing a hydroxyl group on its pentacycle, was not active against all the strains tested [73]. In some cases, Batzelladine-like GA present similar activities compared to crambescidin-like GA. Batzelladines C (28) and L (38) are often the more potent molecules [73]. Nevertheless, batzelladine M (39) is the less active TGA class 2 and surprisingly, the same authors showed batzelladine N (40) to be nine times more efficient compared to batzelladine M (39) against M. tuberculosis (minimum inhibitory concentration (MIC) 3.18 and 28.5 µg¨ mL´1, respectively), despite their chemical structures being closely related [73].

3.3. Antitumoral Activities Over 20 TGA were tested for their cytotoxicity against several cancer cell lines such as prostate, ovary, breast, melanoma leukemia, pancreas, colon, and cervix (Table9). Mar. Drugs 2016, 14, 77 16 of 24 Mar. Drugs 2016, 14, x 16 of 24

Table 8. TGA antimicrobial activities. Table 8. TGA antimicrobial activities.

Bacteria Yeast Fungi Parasites

P. falciparum

(AC)

IC50 (Values are Expressed in µg/mL Unless Specified) Ref. cruzi infatum albicans D6 Clone W2 Clone FcB1 MRSA donovani T. S. aureusS. neoformans anguillarum brucei brucei intracellulare L. C. L. fumigatus P. aeruginosa C. V. T. M. tuberculosis M. A. ptilomycalin A (1) 0.25 0.30 1.0 >128 10 n.t. 0.15 0.10 1.25 0.12 0.11 0.08 * n.t. 5.9 n.t. n.t. [68,73] crambescidin 800 (2) 0.20 0.35 0.95 46.5 15 n.t. 0.15 0.10 1.25 0.11 0.13 n.t. n.t. 6.80 n.t. n.t. [73] 16β-hydroxycrambescidin 800 (16) NA NA NA >128 NA n.t. NA NA NA 3.8 NA NA n.t. n.t. n.t. n.t. [73] batzelladine A (26) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.2* n.t. n.t. n.t. n.t. [68] batzelladine C (28) 0.20 0.30 10 34.7 0.9 n.t. 0.90 0.40 5.0 0.09 0.11 n.t. n.t. 5.5 n.t. n.t. [73] batzelladine D (29) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.9 * n.t. 29 * n.t. [70] batzelladine F (31) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 2.5 * n.t. 3.1 * n.t. [70] dehydrobatzelladine C (35) 0.40 0.70 NA. 37.7 1.0 n.t. 1.0 0.6 20 0.073 0.13 n.t. n.t. 5.70 n.t. n.t. [73] batzelladine L (38) 0.35 0.40 3.50 1.68 0.25 n.t. 0.40 0.55 2.5 0.073 0.10 0.2 * 1.3 * 1.90 1.3 * n.t. [68,73] batzelladine M (39) 3.0 5.0 NA 28.5 3.50 n.t. 6.0 8.0 NA 0.21 0.27 n.t. n.t. 8.50 n.t. n.t. [73] batzelladine N (40) n.t. n.t. n.t. 3.18 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. [73] clathriadic acid (41) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 1.4 * n.t. n.t. n.t. n.t. [68] merobatzelladine A (42) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.48 n.t. n.t. n.t. 0.24 [69] a merobatzelladine B (43) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.97 n.t. n.t. n.t. 0.24 [69] norbatzelladine A (44) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.2 * n.t. n.t. n.t. n.t. [68] norbatzelladine L (45) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.3 * 1.3 * n.t. 4.4 * n.t. [68,70] dinorbatzelladine A (46) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 1.7 * n.t. n.t. n.t. n.t. [68] dinordehydrobatzelladine B (48) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 0.6 * n.t. n.t. n.t. n.t. [68] dihomodehydrobatzelladine C (49) n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 2.3 * n.t. n.t. n.t. n.t. [68] S. aureusS. aureus, Staphyloccocus, Staphyloccocus aureus aureus;; MRSA,MRSA Methicilline, Methicilline resistant resistantStaphyloccocus Staphyloccocus aureus aureus; P. aeruginosa; P. aeruginosa, Pseudomonas, Pseudomonas aeruginosa aeruginosa; M. tuberculosis; M. ,tuberculosisMycobacterium, Mycobacterium tuberculosis; M. tuberculosis intracellulare; ,M. intracellulareMycobacterium, Mycobacterium intracellulare; V.intracellulare angillarum, Vibrio; V. angillarum angillarum;, C.Vibrio albicans angillarum, Candida albicans; C. albicans; A. fumigatus, Candida, Aspergillus albicans fumigatus; A. fumigatu; P. falciparums, Aspergillus, Plasmodium fumigatus falciparum; P. ;falciparumL. infatum,, LeishmaniaPlasmodium infatum; L. donovani, Leishmania donovani; T. cruzi, Trypanosoma cruzi; T. brucei brucei, Trypanosoma brucei brucei; AC, active concentration; NA, not active according to the authors; n.t., not falciparum; L. infatum, Leishmania infatum; L. donovani, Leishmania donovani; T. cruzi, Trypanosoma cruzi; T. brucei brucei, Trypanosoma brucei brucei; AC, active concentration; tested; * converted from µM to µg/mL; a, 9–10 mm/50 µg. NA, not active according to the authors; n.t., not tested; * converted from µM to µg/mL; a, 9–10 mm/50 µg.

Mar. Drugs 2016, 14, 77 17 of 24

Table 9. TGA antitumor activities (values are expressed in µg/mL unless specified).

Prostate Ovary Breast Melanoma Lung Leukemia Pancreas Colon Cervix Ref. DU-145 IGROV SK-BR3 MDA-MB-231 SK-MEL-28 NSCL A549 L-562 HL-60 THP-1 PANCL HT29 HCT-16 LOVO LOVO-DOX HeLa

GI50 0.05 0.04 0.07 n.t. 0.03 0.08 0.04 n.t. n.t. 0.04 0.03 n.t. 0.05 0.05 0.04 ptilomycalin A (1) [73] TGI 1.22 1.74 0.54 n.t. 0.11 1.23 1.33 n.t. n.t. 0.99 0.19 n.t. 2.14 2.04 0.22

LC50 5.21 n.t. n.t. n.t. 0.98 9.79 9.72 n.t. n.t. 0.98 5.37 n.t. 9.79 8.48 3.21

GI50 0.19 0.05 0.16 n.t. 0.04 0.11 0.02 n.t. n.t. 0.04 0.04 n.t. 0.08 0.08 0.05 crambescidin 800 (2) [73] TGI 1.38 2.50 0.56 n.t. 0.11 1.36 0.06 n.t. n.t. 1.53 0.23 n.t. 2.29 2.02 0.21

LC50 7.01 n.t. n.t. n.t. 1.70 9.68 6.73 n.t. n.t. 8.66 5.75 n.t. 8.97 8.50 1.58 GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC crambescidin 816 (3) 50 [52] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.24 n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchocidin A (18) 50 IC 10.1 * [61] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.4.4 * n.t. n.t. n.t. n.t. n.t. 50

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchocidin B (19) 50 [62] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.17 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchocidin C (20) 50 [62] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.09 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchocidin D (21) 50 [62] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.69 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchocidin E (22) 50 [62] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.55 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchomycalin A (23) 50 [63] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.10 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. GI n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 50 IC monanchomycalin B (24) 50 [63] TGI n.t. n.t. n.t. n.t. n.t. n.t. n.t.0.11 * n.t. n.t. n.t. n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. Mar. Drugs 2016, 14, 77 18 of 24

Table 9. Cont.

Prostate Ovary Breast Melanoma Lung Leukemia Pancreas Colon Cervix Ref. DU-145 IGROV SK-BR3 MDA-MB-231 SK-MEL-28 NSCL A549 L-562 HL-60 THP-1 PANCL HT29 HCT-16 LOVO LOVO-DOX HeLa

GI50 0.68 0.81 0.66 n.t. 1.45 1.40 0.62 n.t. n.t. 0.55 0.65 n.t. 2.06 2.25 0.70 batzelladine C (28) [73] TGI 2.27 3.43 2.89 n.t. 3.67 3.42 3.01 n.t. n.t. 2.03 2.16 n.t. 4.37 4.72 2.22

LC50 0.69 n.t. n.t. n.t. 9.24 8.31 n.t. n.t. n.t. 7.14 6.70 n.t. 9.29 0.99 6.50

GI50 0.46 0.73 0.23 n.t. 0.89 1.19 0.48 n.t. n.t. 0.43 0.48 n.t. 1.60 2.07 0.48 dehydrobatzelladine C (35) [73] TGI 1.91 4.17 1.14 n.t. 3.48 3.24 2.42 n.t. n.t. 1.83 1.77 n.t. 3.68 4.48 1.52

LC50 7.15 n.t. n.t. n.t. n.t. 8.81 n.t. n.t. n.t. 8.66 7.50 n.t. 8.47 9.69 5.45

GI50 0.44 0.52 0.23 n.t. 0.88 1.30 n.t. n.t. n.t. 0.34 4.96 n.t. 1.09 n.t. 0.38 batzelladine L (38) [73] TGI 1.39 1.74 0.56 n.t. 2.18 9.99 n.t. n.t. n.t. 1.33 n.t. n.t. 2.41 n.t. 1.16

LC50 3.78 5.01 2.10 n.t. 4.95 n.t. n.t. n.t. n.t. 4.38 n.t. n.t. 5.36 n.t. 3.58

GI50 1.77 2.28 1.12 n.t. 1.18 3.80 n.t. n.t. n.t. 1.22 3.56 n.t. 1.99 n.t. 1.64 batzelladine M (39) [73] TGI 3.44 5.08 2.51 n.t. 4.66 n.t. 0.00 n.t. n.t. 3.58 n.t. n.t. 3.56 n.t. 3.05

LC50 6.66 n.t. 5.59 n.t. n.t. n.t. 0.00 n.t. n.t. n.t. n.t. n.t. 6.37 n.t. 5.68

GI50 1.39 1.78 1.12 n.t. 1.47 1.94 0.66 n.t. n.t. 1.37 1.31 n.t. 1.96 4.42 0.59 batzelladine N (40) [73] TGI 3.12 4.97 3.84 n.t. 3.41 4.29 3.27 n.t. n.t. 3.50 3.11 n.t. 4.16 n.t. 1.80

LC50 7.04 n.t. n.t. n.t. 7.97 9.47 n.t. n.t. n.t. 8.97 7.35 n.t. 8.85 n.t. 5.13

GI50 n.t. n.t. n.t. 13.5 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t. clathriadic acid (41) [68] TGI n.t. n.t. n.t. >30 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. >30 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t.

GI50 n.t. n.t. n.t. 3.8 n.t. 2.1 n.t. n.t. n.t. n.t. 1.6 n.t. n.t. n.t. norbatzelladine A (44) TC 4.7 µM [68] TGI n.t. n.t. n.t. 6.4 n.t. 4.6 n.t. n.t. n.t. n.t. 3.2 n.t.50 n.t. n.t.

LC50 n.t. n.t. n.t. 11.4 n.t. 8.6 n.t. n.t. n.t. n.t. 5.7 n.t. n.t. n.t.

GI50 n.t. n.t. n.t. 0.7 n.t. 1.1 n.t. n.t. n.t. n.t. 1.9 n.t. n.t. n.t. n.t. norbatzelladine L (45) [68] TGI n.t. n.t. n.t. 1.9 n.t. 2.1 n.t. n.t. n.t. n.t. 4.2 n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. 4.8 n.t. 4.2 n.t. n.t. n.t. n.t. 7.6 n.t. n.t. n.t. n.t.

GI50 n.t. n.t. n.t. 3.0 n.t. 1.9 n.t. n.t. n.t. n.t. 1.9 n.t. n.t. n.t. n.t. dinorbatzelladine A (46) [68] TGI n.t. n.t. n.t. 3.8 n.t. 4.2 n.t. n.t. n.t. n.t. 4.2 n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. 5.4 n.t. 7.6 n.t. n.t. n.t. n.t. 7.6 n.t. n.t. n.t. n.t.

GI50 n.t. n.t. n.t. n.t. n.t. 7.9 n.t. n.t. n.t. n.t. 6.2 n.t. n.t. n.t. n.t. dinordehydro-batzelladine B (48) [68] TGI n.t. n.t. n.t. n.t. n.t. >14 n.t. n.t. n.t. n.t. > 14 n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. n.t. n.t. >14 n.t. n.t. n.t. n.t. > 14 n.t. n.t. n.t. n.t.

GI50 n.t. n.t. n.t. 6.1 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t. dihomodehydro-batzelladine C (49) [68] TGI n.t. n.t. n.t. 9.8 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t.

LC50 n.t. n.t. n.t. 15.6 n.t. >30 n.t. n.t. n.t. n.t. >30 n.t. n.t. n.t. n.t. n.t., not tested; * calculated value from µM to µg/mL. Mar. Drugs 2016, 14, 77 19 of 24

Ptilomycalin A (1) is once again the most active TGA tested as its half maximal growth inhibition values (GI50) are always below 0.1 µg/mL on all the cell lines tested [73]. Crambescidin 800 (2) shows similar activities [73]. Compared to TGA class 3, TGA class 2 is less active, although batzelladine C(28) and L (38) and dehydrobatzelladine C (35), in general, exhibited a GI50 below 1 µg/mL [73]. Finally, crambescidin 816 (3) was shown to inhibit cell migration by altering the cytoskeleton dynamics and induced cell death by apoptosis [75,78]. In summary, both TGA class 2 and 3 have been tested against viruses, microbes, and several cancer cell lines. The wide-ranging biological activity of this class of natural products can be in part attributed to the cationic nature of the guanidinium functional group that can participate in a large number of non-covalent molecular interactions [77]. In general, TGA from class 3 exhibited better activities compared to TGA from class 2 [73]. Within TGA class 3, ptilomycalin A (1) and crambescidin 800 (2) showed similar activities in all assays, suggesting that the hydroxyl group of the right-handed portion in crambescidin 800 (2) did not affect the bioactivity. Nevertheless, 16β-hydroxycrambescidin 359 (16) did not show any significant antimicrobial activity, suggesting that the hydroxyl group, located on the pentacycle at C-16, diminished the activity [73]. Further studies are needed to confirm this hypothesis. This could be assessed by evaluating the inhibitory activities of crambescidins 816 (3), 830 (4) and 844 (5), as they carry the same hydroxyl moiety as crambescidin 800 (2) and another hydroxyl located in the pentacycle at C-13. In parallel, several batzelladines have been reported to disrupt protein–protein interactions. Elucidation of the mechanism by which protein–protein interactions are modulated by these molecules is of great interest, since protein–protein associations are important in all the aspects of cell biochemistry. Moreover, small molecules that influence protein–protein association would be new biological tools and potential therapeutic agents. In particular, batzelladines or their derivatives may prove to be applicable for AIDS treatment. Batzelladines A–E (26–30) block interaction between the surface of the HIV envelope glycoprotein gp120 and the extracellular domains of human CD4 receptor protein [66]. A subset of batzelladines exhibited also potential immunosuppressive activity as they induce dissociation of the complex between the protein kinase p56lck and CD4 [67]. Synthetic derivatives of batzelladines were reported to disrupt Nef–p53, Nef–actin, and Nef–p56lck interactions [77]. Bewley et al. tested a series of 28 synthetic batzelladine-like GA analogues on HIV-1 cell fusion assay, to find structure-activity relationships [76]. According to this study, the greater the rigidity of the molecule, the less biologically active it is. Moreover, they have shown that the most active compounds tested were compounds which contain two tricyclic guanidine moieties connected by an alkyl ester linkage including eight heavy atoms, such as batzelladines F (31) and G (32). Batzelladines biological properties could be dramatically affected by the ester side chains. For example, batzelladine A(26) inhibits the binding of HIV glycoprotein gp120 to CD4 receptors, whereas batzelladine D (29) has no known biological activity [77]. Finally, several derivatives that do not feature an ester side chain may still exhibit interesting biological properties such as the antibacterial and antimalarial activities of merobatzelladines A (42) and B (43) [69].

4. Conclusions Several batzelladine- and crambescidin-like guanidine alkaloids have been isolated from Poecilosclerida marine sponges. Their biosynthesis, or the biosynthesis of their precursors, may involve symbiotic microorganisms [79]. This class of natural products is structurally unique as all the derivatives are constituted by a tricyclic guanidinium ring system, to which are appended different substituents. This significant structural diversity has led to wide-ranging biological properties with mainly antiviral, antimicrobial (including antifungal, antibacterial, anti-yeast, and antiparasitic), and antitumor activities. In addition to the biomimetic strategy, a number of groups completed the total synthesis of several of these alkaloids by developing new synthetic methodologies. Although there are many efficient and stereoselective synthetic routes towards this class of natural products, there is not yet one method that would allow entry into all of the cores of this family. Nonetheless, a number of these Mar. Drugs 2016, 14, 77 20 of 24 syntheses have enabled the establishment of their relative and absolute stereochemical configurations. In conclusion, several of these alkaloids and their synthetic analogs were prepared on a large enough scale to allow further biological testing, including few structure-activity relationship studies. Ongoing studies may provide us with further clues regarding this class of Marine Natural Products.

Acknowledgments: We thank J. Pattinson and D. Coaten for their kind reading of this manuscript. E. Sfecci is the recipient of a thesis grant from the “Conseil Régional Provence Alpes Côte d’azur”. M. Mehiri’s research is supported by the French program ENVI-Med “MEDIBIO”, the ANR/Investissements d’Avenir program via the OCEANOMICs project (grant #ANR-11-BTBR-0008), and the H2020 European program via the EMBRIC project. Author Contributions: All the authors wrote, read, and approved the final version of the manuscript. Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations The following abbreviations are used in this manuscript: A.m. Antimicrobial activity A.v. Antiviral activity A.t. Antitumor activity COSY Correlation Spectroscopy EC50 half maximal Effective Concentration GA Guanidine Alkaloids GI50 half maximal Growth Inhibition gp120 glycoprotein 120 HBV Human hepatitis B virus HIV-1 Human Immunodeficiency Virus 1 HSV-1 Herpes simplex Virus 1 IC50 half maximal Inhibitory Concentration LC50 half maximal Lethal Concentration MIC Minimum Inhibitory Concentration MS Mass Spectrometry NMR Nuclear Magnetic Resonance n.t. Not tested PBMC Peripheral Blood Mononuclear Cells SM Secondary Metabolites TC50 half maximal Toxic Concentration TGA Triazaacenaphthylene Guanidine Alkaloids TGI Total Growth Inhibition concentration

References

1. Nijampatnam, B.; Dutta, S.; Velu, S.E. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chin. J. Nat. Med. 2015, 13, 561–577. [CrossRef] 2. Gul, W.; Hamann, M.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 2005, 78, 442–453. [CrossRef][PubMed] 3. Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs 2009, 7, 705–753. [CrossRef][PubMed] 4. Weinreb, S.M. Some recent advances in the synthesis of polycyclic imidazole-containing marine natural products. Nat. Prod. Rep. 2007, 24, 931–948. [CrossRef][PubMed] 5. Berlinck, R.G.S. Natural guanidine derivatives. Nat. Prod. Rep. 2002, 19, 617–649. [CrossRef][PubMed] 6. Berlinck, R.G.S.; Burtoloso, A.C.; Kossuga, M.H. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 2008, 25, 919–954. [CrossRef][PubMed] Mar. Drugs 2016, 14, 77 21 of 24

7. Berlinck, R.G.S.; Burtoloso, A.C.; Trindade-Silva, A.E.; Romminger, S.; Morais, R.P.; Bandeira, K.; Mizuno, C.M. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 2010, 27, 1871–1907. [CrossRef][PubMed] 8. Berlinck, R.G.S.; Kossuga, M.H. Natural guanidine derivatives. Nat. Prod. Rep. 2005, 22, 516–550. [CrossRef] [PubMed] 9. Berlinck, R.G.S. Natural guanidine derivatives. Nat. Prod. Rep. 1999, 16, 339–365. [CrossRef] 10. Faulkner, J.D. Marine natural products. Nat. Prod. Rep. 2001, 18, 1–49. [CrossRef][PubMed] 11. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [CrossRef][PubMed] 12. Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2007, 24, 31–86. [CrossRef][PubMed] 13. Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2008, 25, 35–94. [CrossRef][PubMed] 14. Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [CrossRef][PubMed] 15. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2010, 27, 165–237. [CrossRef][PubMed] 16. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2011, 28, 196–268. [CrossRef][PubMed] 17. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [CrossRef][PubMed] 18. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323. [CrossRef][PubMed] 19. Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [CrossRef][PubMed] 20. Berlinck, R.G.S.; Trindade-Silva, A.E.; Santos, M.F. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep. 2012, 29, 1382–1406. [CrossRef][PubMed] 21. Snider, B.B.; Shi, Z. Biomimetic synthesis of the central tricyclic portion of ptilomycalin A. Tetrahedron Lett. 1993, 34, 2099–2102. [CrossRef] 22. Rao, A.V.R.; Gurjar, M.K.; Vasudevan, J. An enantiospecific synthesis of the tricyclic guanidine segment of the anti-HIV marine alkaloid batzelladine A. J. Chem. Soc. Chem. Commun. 1995, 13, 1369–1370. [CrossRef] 23. Louwrier, S.; Ostendorf, M.; Boom, A.; Hiemstra, H.; Speckamp, W.N. Studies towards the synthesis of (+)-ptilomycalin A; stereoselective N-acyliminium ion coupling reactions to enantiopure C-2 substituted lactams. Tetrahedron 1996, 52, 2603–2628. [CrossRef] 24. Louwrier, S.; Ostendorf, M.; Tuynman, A.; Hiemstra, H. Studies towards the synthesis of guanidine alkaloids; synthesis of a tricyclic guanidine from succinimide. Tetrahedron Lett. 1996, 37, 905–908. [CrossRef] 25. Louwrier, S.; Tuynman, A.; Hiemstra, H. Synthesis of bicyclic guanidines from pyrrolidin-2-one. Tetrahedron 1996, 52, 2629–2646. [CrossRef] 26. Murphy, P.J.; Lloyd Williams, H.; Hibbs, D.E.; Hursthouse, M.B.; Malik, A.K.M. Biomimetic model studies towards ptilomycalin A. Tetrahedron 1996, 52, 8315–8332. [CrossRef] 27. Snider, B.B.; Chen, J.; Patil, A.D.; Freyer, A.J. Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D. Tetrahedron Lett. 1996, 37, 6977–6980. [CrossRef] 28. Black, G.P.; Murphy, P.J.; Walshe, N.D.A. A short synthetic route to the tricyclic guanidinium core of the batzelladine alkaloids. Tetrahedron 1998, 54, 9481–9488. [CrossRef] 29. Black, G.P.; Murphy, P.J.; Thornhill, A.J.; Walshe, N.D.A.; Zanetti, C. Synthesis of the left hand unit of batzelladine F; revision of the reported relative stereochemistry. Tetrahedron 1999, 55, 6547–6554. [CrossRef] 30. Snider, B.B.; Busuyek, M.V. Revision of the stereochemistry of batzelladine F. Approaches to the tricyclic hydroxyguanidine moiety of batzelladines G, H, and I. J. Nat. Prod. 1999, 62, 1707–1711. [CrossRef][PubMed] 31. Coffey, D.S.; McDonald, A.I.; Overman, L.E.; Rabinowitz, M.H.; Renhowe, P.A. A practical entry to the crambescidin family of guanidine alkaloids. Enantioselective total syntheses of ptilomycalin A, crambescidin 657 and its methyl ester (neofolitispates 2), and crambescidin 800. J. Am. Chem. Soc. 2000, 122, 4893–4903. [CrossRef] Mar. Drugs 2016, 14, 77 22 of 24

32. Elliott, M.C.; Long, M.S. Studies towards the total synthesis of batzelladine A. Org. Biomol. Chem 2004, 2, 2003–2011. [CrossRef][PubMed] 33. Aron, Z.D.; Overman, L.E. Total synthesis and properties of the crambescidin core zwitterionic acid and crambescidin 359. J. Am. Chem. Soc. 2005, 127, 3380–3390. [CrossRef][PubMed] 34. Shi, Y.; Pierce, J.G. Synthesis of the 5,6-dihydroxymorpholin-3-one fragment of monanchocidin A. Org. Lett. 2015, 17, 968–971. [CrossRef][PubMed] 35. Snider, B.B.; Chen, J. Synthesis of batzelladine E and its E isomer. Tetrahedron Lett. 1998, 39, 5697–5700. [CrossRef] 36. Coffey, D.S.; McDonald, A.I.; Overman, L.E.; Stappenbeck, F. Enantioselective total synthesis of 13,14,15-isocrambescidin 800. J. Am. Chem. Soc. 1999, 121, 6944–6945. [CrossRef] 37. Cohen, F.; Overman, L.E.; Ly Sakata, S.K. Asymmetric total synthesis of batzelladine D. Org. Lett. 1999, 1, 2169–2172. [CrossRef][PubMed] 38. Franklin, A.S.; Ly, S.K.; Mackin, G.H.; Overman, L.E.; Shaka, A.J. Application of the tethered biginelli reaction for enantioselective synthesis of batzelladine alkaloids. Absolute configuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem. 1999, 64, 1512–1519. [CrossRef][PubMed] 39. Cohen, F.; Overman, L.E. Enantioselective total synthesis of batzelladine F: Structural revision and stereochemical definition. J. Am. Chem. Soc. 2001, 123, 10782–10783. [CrossRef][PubMed] 40. Ishiwata, T.; Hino, T.; Koshino, H.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. Total synthesis of batzelladine D. Org. Lett. 2002, 4, 2921–2924. [CrossRef][PubMed] 41. Nagasawa, K.; Hashimoto, Y. Synthesis of marine guanidine alkaloids and their application as chemical/biological tools. Chem. Rec. 2003, 3, 201–211. [CrossRef][PubMed] 42. Aron, Z.D.; Overman, L.E. The tethered biginelli condensation in natural product synthesis. Chem. Commun. 2004, 3, 253–265. [CrossRef][PubMed] 43. Collins, S.K.; McDonald, A.I.; Overman, L.E.; Ho Rhee, Y. Enantioselective total synthesis of (´)-dehydrobatzelladine C. Org. Lett. 2004, 6, 1253–1255. [CrossRef][PubMed] 44. Arnold, M.A.; Duron, S.G.; Gin, D.Y. Diastereoselective [4+2] annulation of vinyl carbodiimides with N-alkyl imines. Asymmetric synthetic access to the batzelladine alkaloids. J. Am. Chem. Soc. 2005, 127, 6924–6925. [CrossRef][PubMed] 45. Overman, L.E.; Ho Rhee, Y. Total synthesis of (´)-crambidine and definition of the relative configuration of its unique tetracyclic guanidinium core. J. Am. Chem. Soc. 2005, 125, 15652–15658. [CrossRef][PubMed] 46. Shimokawa, J.; Ishiwata, T.; Shirai, K.; Koshino, H.; Tanatani, A.; Nakata, T.; Hashimoto, Y.; Nagasawa, K. Total synthesis of (+)-batzelladine A and (´)-batzelladine D, and identification of their target protein. Chemistry 2005, 11, 6878–6888. [CrossRef][PubMed] 47. Evans, P.A.; Qin, J.; Robinson, J.E.; Bazin, B. Enantioselective total synthesis of the polycyclic guanidine-containing marine alkaloid (´)-batzelladine D. Angew. Chem. 2007, 46, 7417–7419. [CrossRef] [PubMed] 48. Moore, C.G.; Murphy, P.J.; Williams, H.L.; McGown, A.T.; Smith, N.K. Synthetic studies towards ptilomycalin A: Total synthesis of crambescidin 359. Tetrahedron 2007, 63, 11771–11780. [CrossRef] 49. Perl, N.R.; Ide, N.D.; Prajapati, S.; Perfect, H.; Duro, S.G.; Gin, D.Y. Annulation of thioimidates and vinyl carbodiimides to prepare 2-aminopyrimidines, competent nucleophiles for intramolecular alkyne hydroamination. Synthesis of (´)-crambidine. J. Am. Chem. Soc. 2010, 132, 1802–1803. [CrossRef][PubMed] 50. Babij, N.R.; Wolfe, J.P. Asymmetric total synthesis of (+)-merobatzelladine B. Angew. Chem. 2012, 51, 4128–4130. [CrossRef][PubMed] 51. Kashman, Y.; Hirsh, S.; McConnell, O.J.; Ohtani, I.; Kusumi, T.; Kakisawa, H. Ptilomycalin A: A novel polycyclic guanidine alkaloid of marine origin. J. Am. Chem. Soc. 1989, 111, 8926–8928. [CrossRef] 52. Berlinck, R.G.S.; Braekman, J.C.; Daloze, D.; Bruno, I.; Riccio, R. Polycyclic guanidine alkaloids from the marine sponge Crambe crambe and Ca++ channel blocker activity of crambescidin 816. J. Nat. Prod. 1993, 56, 1007–1015. [CrossRef][PubMed] 53. Braekman, J.C.; Daloze, D.; Tavares, R.; Hajdu, E.; Van Soest, R.W.M. Novel polycyclic guanidine alkaloids from two marine sponges of the genus Monanchora. J. Nat. Prod. 2000, 63, 193–196. [CrossRef][PubMed] 54. Chang, L.; Whittaker, N.F.; Bewley, C.A. Crambescidin 826 and dehydrocrambine A: New polycyclic guanidine alkaloids from the marine sponge Monanchora sp. That inhibit HIV-1 fusion. J. Nat. Prod. 2003, 66, 1490–1494. [CrossRef][PubMed] Mar. Drugs 2016, 14, 77 23 of 24

55. Jares-Erijman, E.A.; Sakai, R.; Rinehart, K.L. Crambescidins: New antiviral and cytotoxic compounds from the sponge Crambe crambe. J. Org. Chem. 1991, 56, 5712–5715. [CrossRef] 56. Jares-Erijman, E.A.; Ingrum, A.L.; Carney, J.R.; Rinehart, K.L.; Sakai, R. Polycyclic guanidine-containing compounds from the mediterranean sponge Crambe crambe: The structure of 13,14,15-isocrambescidin 800 and the absolute stereochemistry of the pentacyclic guanidine moieties of the crambescidins. J. Org. Chem. 1993, 58, 4805–4808. [CrossRef] 57. Venkateswarlu, Y.; Venkata Rami Reddy, M.; Ramesh, P.; Venkateswara Rao, J. Neofolitispates, pentacyclic guanidine alkaloids from the sponge Neofolitispa dianchora. Indian J. Chem. 1999, 38B, 254–256. 58. Meragelman, K.M.; McKee, T.C.; McMahon, J.B. Monanchorin, a bicyclic alkaloid from the sponge Monanchora ungiculata. J. Nat. Prod. 2004, 67, 1165–1167. [CrossRef][PubMed] 59. Gallimore, W.A.; Kelly, M.; Scheuer, P.J. Alkaloids from the sponge Monanchora unguifera. J. Nat. Prod. 2005, 68, 1420–1423. [CrossRef][PubMed] 60. Bensemhoun, J.; Bombarda, I.; Aknin, M.; Vacelet, J.; Gaydou, E.M. Ptilomycalin D, a polycyclic guanidine alkaloid from the marine sponge Monanchora dianchora. J. Nat. Prod. 2007, 70, 2033–2035. [CrossRef] [PubMed] 61. Guzii, A.G.; Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Kuzmich, A.S.; Dyshlovoy, S.A.; Krasokhin, V.B.; Stonik, V.A. Monanchocidin: A new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org. Lett. 2010, 12, 4292–4295. [CrossRef][PubMed] 62. Makarieva, T.N.; Tabakmaher, K.M.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Shubina, L.K.; Kuzmich, A.S.; Lee, H.S.; Stonik, V.A. Monanchocidins B–E: Polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra. J. Nat. Prod. 2011, 74, 1952–1958. [CrossRef] [PubMed] 63. Makarieva, T.N.; Tabakmaher, K.M.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Kuzmich, A.S.; Lee, H.-S.; Stonik, V.A. Monanchomycalins A and B, unusual guanidine alkaloids from the sponge Monanchora pulchra. Tetrahedron Lett. 2012, 53, 4228–4231. [CrossRef] 64. Tabakmakher, K.M.; Denisenko, V.A.; Guzii, A.G.; Dmitrenok, P.S.; Dyshlovoy, S.A.; Lee, H.-S.; Makarieva, T.N. Monanchomycalin C, a new pentacyclic guanidine alkaloid from the far-eastern marine sponge Monanchora pulchra. Nat. Prod. Com. 2013, 8, 1399–1402. 65. Palagiano, E.; De Marino, S.; Minale, L.; Riccio, R.; Zollo, F. Ptilomycalin A, crambescidin 800 and related new highly cytotoxic guanidine alkaloids from the starfishes Fromia monilis and Celerina heffernani. Tetrahedron 1995, 51, 3675–3682. [CrossRef] 66. Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freyer, A.J.; De Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D.J.; Carte, B.; et al. Novel alkaloids from the sponge Batzella sp.: Inhibitors of HIV gp120-human CD4 binding. J. Org. Chem. 1995, 60, 1182–1188. [CrossRef] 67. Patil, A.D.; Freyer, A.J.; Taylor, P.B.; Carte, B.; Johnson, R.K.; Faulkner, D.J. Batzelladines F-I, novel alkaloids from the sponge Batzella sp.: Inducers of p56lck-CD4 dissociation. J. Org. Chem. 1997, 62, 1814–1819. [CrossRef] 68. Laville, R.; Thomas, O.P.; Berrue, F.; Marquez, D.; Vacelet, J.; Amade, P. Bioactive guanidine alkaloids from two caribbean marine sponges. J. Nat. Prod. 2009, 72, 1589–1594. [CrossRef][PubMed] 69. Takishima, S.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Yamada, H.; Omura, S.; Kobayashi, H.; van Soest, R.W.M.; Matsunaga, S. Merobatzelladines A and B, anti-infective tricyclic guanidines from a marine sponge Monanchora sp. Org. Lett. 2009, 11, 2655–2658. [CrossRef][PubMed] 70. Santos, M.F.; Harper, P.M.; Williams, D.E.; Mesquita, J.T.; Pinto, E.G.; da Costa-Silva, T.A.; Hajdu, E.; Ferreira, A.G.; Santos, R.A.; Murphy, P.J.; et al. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J. Nat. Prod. 2015, 78, 1101–1112. [CrossRef][PubMed] 71. Kornprobst, J.-M. Encyclopedia of Marine Natural Products, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; Volume 2, pp. 869–877. 72. Daniel Dalet. Planisphère centré Europe Afrique. Available online: http://d-maps.com/carte.php ?num_car=126803&lang=fr (access on 5 November 2015). 73. Hua, H.-M.; Peng, J.; Dunbar, D.C.; Schinazi, R.F.; de Castro Andrews, A.G.; Cuevas, C.; Garcia-Fernandez, L.F.; Kelly, M.; Hamann, M.T. Batzelladine alkaloids from the caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron 2007, 63, 11179–11188. [CrossRef] Mar. Drugs 2016, 14, 77 24 of 24

74. Suna, H.; Aoki, S.; Setiawan, A.; Kobayashi, M. Crambescidin 800, a pentacyclic guanidine alkaloid, protects a mouse hippocampal cell line against glutamate-induced oxidative stress. J. Nat. Med. 2007, 61, 288–295. [CrossRef] 75. Rubiolo, J.A.; Lopez-Alonso, H.; Roel, M.; Vieytes, M.R.; Thomas, O.; Ternon, E.; Vega, F.V.; Botana, L.M. Mechanism of cytotoxic action of crambescidin-816 on human liver-derived tumour cells. Br. J. Pharmacol. 2014, 171, 1655–1667. [CrossRef][PubMed] 76. Bewley, C.A.; Ray, S.; Cohen, F.; Collins, S.K.; Overman, L.E. Inhibition of HIV-1 envelope-mediated fusion by synthetic batzelladine analogues. J. Nat. Prod. 2004, 67, 1319–1324. [CrossRef][PubMed] 77. Overman, L.E.; Wolfe, J.P. Synthesis of polycyclic guanidines by cyclocondensation reactions of N-amidinyliminium ions. J. Org. Chem. 2001, 66, 3167–3175. [CrossRef][PubMed] 78. Rubiolo, J.A.; Ternon, E.; Lopez-Alonso, H.; Thomas, O.P.; Vega, F.V.; Vieytes, M.R.; Botana, L.M. Crambescidin-816 acts as a fungicidal with more potency than crambescidin-800 and -830, inducing cell cycle arrest, increased cell size and apoptosis in Saccharomyces cerevisiae. Mar. Drugs 2013, 11, 4419–4434. [CrossRef][PubMed] 79. Croue, J.; West, N.J.; Escande, M.L.; Intertaglia, L.; Lebaron, P.; Suzuki, M.T. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci. Rep. 2013, 3, 2583–2590. [CrossRef][PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).