NCOA6 Polyclonal Antibody Catalog Number:25241-1-AP 2 Publications

Total Page:16

File Type:pdf, Size:1020Kb

NCOA6 Polyclonal Antibody Catalog Number:25241-1-AP 2 Publications For Research Use Only NCOA6 Polyclonal antibody Catalog Number:25241-1-AP 2 Publications www.ptglab.com Catalog Number: GenBank Accession Number: Purification Method: Basic Information 25241-1-AP BC136272 Antigen affinity purification Size: GeneID (NCBI): Recommended Dilutions: 150ul , Concentration: 900 μg/ml by 23054 IP 0.5-4.0 ug for IP and 1:500-1:2000 Nanodrop and 313 μg/ml by Bradford Full Name: for WB method using BSA as the standard; nuclear receptor coactivator 6 Source: Calculated MW: Rabbit 2063 aa, 219 kDa Isotype: Observed MW: IgG 68 kDa, 219 kDa, 110 kDa Immunogen Catalog Number: AG18737 Applications Tested Applications: Positive Controls: FC, IP,ELISA IP : HEK-293 cells, Cited Applications: IF, WB Species Specificity: human, mouse Cited Species: human NCOA6 (Nuclear receptor coactivator 6), also named as AIB3 or ANTP, is a 2063 amino acid protein, which contains Background Information two LXXLL motifs. NCOA6 localizes in the nucleus and is highly expressed in brain, prostate, testis and ovary. NCOA6 directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. The molecular weight of NCOA6 is 219 kDa, but we always detected 68 kDa protein by western blot. Notable Publications Author Pubmed ID Journal Application Yetao Xu 30195759 Mol Ther Nucleic Acids WB Liang Yan 28546420 Mol Pharmacol WB,IF Storage: Storage Store at -20°C. Stable for one year after shipment. Storage Buffer: PBS with 0.02% sodium azide and 50% glycerol pH 7.3. Aliquoting is unnecessary for -20ºC storage For technical support and original validation data for this product please contact: This product is exclusively available under Proteintech T: 1 (888) 4PTGLAB (1-888-478-4522) (toll free E: [email protected] Group brand and is not available to purchase from any in USA), or 1(312) 455-8498 (outside USA) W: ptglab.com other manufacturer. Selected Validation Data 1X10^6 HeLa cells were stained with 0.20ug IP Result of anti-NCOA6 (IP:25241-1-AP, 4ug; NCOA6 antibody (25241-1-AP, red) and control Detection:25241-1-AP 1:1000) with HEK-293 cells antibody (blue). Fixed with 90% MeOH. lysate 2560ug..
Recommended publications
  • In Acute Myeloid Leukemia
    7283 Original Article Comprehensively analyze the expression and prognostic role for ten-eleven translocations (TETs) in acute myeloid leukemia Yan Huang1#, Jie Wei1#, Xunjun Huang1, Weijie Zhou1, Yuling Xu2, Dong-Hong Deng2, Peng Cheng2 1Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China; 2Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China Contributions: (I) Conception and design: J Wei, Y Huang; (II) Administrative support: X Huang, Y Xu; (III) Provision of study materials or patients: W Zhou; (IV) Collection and assembly of data: J Wei, Y Huang; (V) Data analysis and interpretation: DH Deng, P Cheng; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Yuling Xu. Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China. Email: [email protected]; Dong-Hong Deng. Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China. Email: [email protected]; Peng Cheng. Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China. Email: [email protected]. Background: The ten-eleven translocation (TET) family oxidize 5-methylcytosines (5mCs) and promote the locus-specific reversal of DNA. The role of TETs in acute myeloid leukemia (AML) is mostly unknown. Methods: TETs mRNA expression levels were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA). The association TETs expression levels and methylation with prognosis by UALCAN GenomicScape, and METHsurv. We analyzed TETs’ aberration types, located mutations, and structures via cBioPortal. GeneMANIA performed the functional network. Gene ontology (GO) enrichment was analyzed via LinkedOmics.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2020/05/03/mol.120.119776.DC1 1521-0111/98/1/24–37$35.00 https://doi.org/10.1124/mol.120.119776 MOLECULAR PHARMACOLOGY Mol Pharmacol 98:24–37, July 2020 Copyright ª 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells s Philipp Y. Maximov, Balkees Abderrahman, Yousef M. Hawsawi, Yue Chen, Charles E. Foulds, Antrix Jain, Anna Malovannaya, Ping Fan, Ramona F. Curpan, Ross Han, Sean W. Fanning, Bradley M. Broom, Daniela M. Quintana Rincon, Jeffery A. Greenland, Geoffrey L. Greene, and V. Craig Jordan Downloaded from Departments of Breast Medical Oncology (P.Y.M., B.A., P.F., D.M.Q.R., J.A.G., V.C.J.) and Computational Biology and Bioinformatics (B.M.B.), University of Texas, MD Anderson Cancer Center, Houston, Texas; King Faisal Specialist Hospital and Research (Gen.Org.), Research Center, Jeddah, Kingdom of Saudi Arabia (Y.M.H.); The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois (R.H., S.W.F., G.L.G.); Center for Precision Environmental Health and Department of Molecular and Cellular Biology (C.E.F.), Mass Spectrometry Proteomics Core (A.J., A.M.), Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core (A.M.), and Dan L. Duncan molpharm.aspetjournals.org
    [Show full text]
  • TAZ-CAMTA1 and YAP-TFE3 Alter the TAZ/YAP Transcriptome By
    RESEARCH ARTICLE TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex Nicole Merritt1†, Keith Garcia1,2†, Dushyandi Rajendran3, Zhen-Yuan Lin3, Xiaomeng Zhang4, Katrina A Mitchell4,5, Nicholas Borcherding6, Colleen Fullenkamp1, Michael S Chimenti7, Anne-Claude Gingras3, Kieran F Harvey4,5,8, Munir R Tanas1,2,9,10* 1Department of Pathology, University of Iowa, Iowa City, United States; 2Cancer Biology Graduate Program, University of Iowa, Iowa City, United States; 3Lunenfeld- Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, United States; 4Peter MacCallum Cancer Centre, Melbourne, Australia; 5Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; 6Department of Pathology and Immunology, Washington University, St. Louis, United States; 7Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, United States; 8Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, Australia; 9Holden Comprehensive Cancer Center, University of Iowa, Iowa City, United States; 10Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, United States *For correspondence: Abstract Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early [email protected] in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined †These authors contributed proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the equally to this work Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion Competing interests: The proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3.
    [Show full text]
  • Histone Demethylases at the Center of Cellular Differentiation and Disease
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease Paul A.C. Cloos,2 Jesper Christensen, Karl Agger, and Kristian Helin1 Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen, Denmark The enzymes catalyzing lysine and arginine methylation impacts on the transcriptional activity of the underlying of histones are essential for maintaining transcriptional DNA by acting as a recognition template for effector programs and determining cell fate and identity. Until proteins modifying the chromatin environment and lead- recently, histone methylation was regarded irreversible. ing to either repression or activation. Thus, histone However, within the last few years, several families of methylation can be associated with either activation or histone demethylases erasing methyl marks associated repression of transcription depending on which effector with gene repression or activation have been identified, protein is being recruited. It should be noted that the underscoring the plasticity and dynamic nature of his- unmodified residues can also serve as a binding template tone methylation. Recent discoveries have revealed that for effector proteins leading to specific chromatin states histone demethylases take part in large multiprotein (Lan et al. 2007b). complexes synergizing with histone deacetylases, histone Arginine residues can be modified by one or two meth- methyltransferases, and nuclear receptors to control de- yl groups; the latter form in either a symmetric or asym- velopmental and transcriptional programs. Here we re- metric conformation (Rme1, Rme2s, and Rme2a), per- view the emerging biochemical and biological functions mitting a total of four states: one unmethylated and of the histone demethylases and discuss their potential three methylated forms.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Supporting Information
    Supporting Information Ji et al. 10.1073/pnas.1613195113 SI Materials and Methods We acquired the Haploinsufficiency Scores (32) and the Ge- Identification of EGs. We identified 3,023 protein-coding EGs nome-Wide Haploinsufficiency Scores (33) for genome-wide annotated with 50 Mouse Phenotype (MP) terms, including prediction of the probability of haploinsufficiency. For each prenatal, perinatal, and postnatal lethal phenotypes from the prediction model, the raw scores were ranked and converted to MGI (23) (Table S8). The MGI database was also used to extract percentiles. The histograms and estimated density curves were 4,995 protein-coding NEGs with nonlethal phenotypes in the plotted using ggplot2 (geom_histogram and geom_line) in R. mouse. Phenotype data from the IMPC database portal (24) Burden Analysis of Mutations in EGs in ASD Families. expanded the lethal gene list with the addition of 252 lethal The Simons genes and 101 genes with subviable phenotypes. We further Simplex Collection contains genetic and phenotypic information supplemented the nonlethal gene list with 701 genes with viable from 2,600 ASD families, each of which has one child affected phenotypes from the IMPC. In the case of discrepancy in the with ASD and unaffected parents and siblings (34). ASD pro- bands were defined by clinical consensus from the Autism Di- reported lethality status between the MGI and the IMPC, we – deferred to the phenotypes reported by the IMPC, because these agnostic Interview Revised (57) and the Autism Diagnostic mouse lines were generated on a defined C57BL/6N background Observation Schedule (58). Multiple individual phenotypic measures, including the SRS (35) and IQ, were available (8, 26).
    [Show full text]
  • Interplay Between Cofactors and Transcription Factors in Hematopoiesis and Hematological Malignancies
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies Zi Wang 1,2, Pan Wang2, Yanan Li2, Hongling Peng1, Yu Zhu2, Narla Mohandas3 and Jing Liu2 Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system. Signal Transduction and Targeted Therapy (2021) ;6:24 https://doi.org/10.1038/s41392-020-00422-1 1234567890();,: INTRODUCTION by their ATPase subunits into four major families, including the Hematopoiesisisacomplexhierarchicaldifferentiationprocessthat SWI/SNF, ISWI, Mi-2/NuRD, and INO80/SWR1 families.
    [Show full text]
  • Arp39015 P050
    Aviva Systems Biology PPARGC1A antibody - N-terminal region (ARP39015_P050) Product Number ARP39015_P050 Product Page http://www.avivasysbio.com/ppargc1a-antibody-n-terminal-region-arp39015-p050.html Product Name PPARGC1A antibody - N-terminal region (ARP39015_P050) Size 100 ul Gene Symbol PPARGC1A Alias Symbols LEM6, PGC-1(alpha), PGC-1v, PGC1, PGC1A, PPARGC1 Protein Size (# AA) 798 amino acids Molecular Weight 91kDa Product Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. NCBI Gene Id 10891 Host Rabbit Clonality Polyclonal Concentration Batch dependent within range: 100 ul at 0.5 - 1 mg/ml Official Gene Full Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha Name Description This is a rabbit polyclonal antibody against PPARGC1A. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire ([email protected]). Peptide Sequence Synthetic peptide located within the following region: MAWDMCNQDSESVWSDIECAALVGEDQPLCPDLPELDLSELDVNDLDTDS Description of The protein encoded by this gene is a transcriptional coactivator that regulates the genes Target involved in energy metabolism. This protein interacts with PPARgamma, which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element binding protein (CREB) and nuclear respiratory factors (NRFs).
    [Show full text]
  • The Transcriptional Coregulator RIP140 Represses E2F1 Activity and Discriminates Breast Cancer Subtypes
    The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes Aurélie DOCQUIER1#, Pierre-Olivier HARMAND1,2#, Samuel FRITSCH1,3, Maïa CHANRION1,4, Jean-Marie DARBON1 and Vincent CAVAILLÈS1 1 IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France ; INSERM, U896, Montpellier, F-34298, France ; Université Montpellier1, Montpellier, F-34298, France ; CRLC Val d’Aurelle Paul Lamarque, Montpellier, F-34298, France. Contact: Dr V Cavaillès, INSERM U896, Parc Euromédecine Val d’Aurelle, 208 rue des Apothicaires, Montpellier, F-34298 France. Phone: 33 4 67 61 24 05. Fax: 33 4 67 61 67 87 ; E-mail [email protected] Present addresses: 2 URC, CRLC Val d’Aurelle, Parc Euromédecine, Montpellier, F-34298 France 3; INSERM U858, CHU Rangueil, Toulouse, F-31432 France; 4, CSHL, 500 Sunnyside Bd, 11797 Woodbury, NY, USA Additional Footnote: # These authors contributed equally to the work Running title: RIP140 controls E2F1 activity Total word count: 4840 1 STATEMENT OF TRANSLATIONAL RELEVANCE Nuclear receptor transcriptional coregulators are implicated in a large variety of human pathologies. Their clinical relevance in breast cancers is now well admitted, deregulation of their expression or altered post-translational modifications being associated with cancer progression or with recurrence following tamoxifen monotherapy. Receptor interacting protein of 140 kDa (RIP140) is one of these nuclear receptor transcriptional coregulators and we report here the first study investigating its role in the E2F signaling pathway. We demonstrate that RIP140 interacts with E2F1, represses its transcriptional activity and affects cell cycle progression. In support of these observations, we found that RIP140 expression was inversely correlated with a signature of E2F1-target genes and discriminated breast cancer subtypes, low levels of expression being associated with basal-like tumors.
    [Show full text]
  • Methylation Analysis of Histone H4k12ac-Associated Promoters In
    Vieweg et al. Clinical Epigenetics (2015) 7:31 DOI 10.1186/s13148-015-0058-4 RESEARCH Open Access Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients Markus Vieweg1†, Katerina Dvorakova-Hortova2,3†, Barbora Dudkova3, Przemyslaw Waliszewski4, Marie Otte5, Berthold Oels5, Amir Hajimohammad5, Heiko Turley6,MartinSchorsch6, Hans-Christian Schuppe4, Wolfgang Weidner4, Klaus Steger1 and Agnieszka Paradowska-Dogan1*† Abstract Background: Histone to protamine exchange and the hyperacetylation of the remaining histones are hallmarks of spermiogenesis. Acetylation of histone H4 at lysine 12 (H4K12ac) was observed prior to full decondensation of sperm chromatin after fertilization suggesting an important role for the regulation of gene expression in early embryogenesis. Similarly, DNA methylation may contribute to gene silencing of several developmentally important genes. Following the identification of H4K12ac-binding promoters in sperm of fertile and subfertile patients, we aimed to investigate whether the depletion of histone-binding is associated with aberrant DNA methylation in sperm of subfertile men. Furthermore, we monitored the transmission of H4K12ac, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) from the paternal chromatin to the embryo applying mouse in vitro fertilization and immunofluorescence. Results: Chromatin immunoprecipitation (ChIP) with anti-H4K12ac antibody was performed with chromatin isolated from spermatozoa of subfertile patients with impaired sperm
    [Show full text]
  • Interactions of CCAAT/Enhancer-Binding Protein Β with Transcriptional Coregulators
    Interactions of CCAAT/enhancer-binding protein β with transcriptional coregulators ABSTRACT CAAT/enhancer-binding proteins (C/EBPs) are key regulators of numerous cellular pro- Maria Miller Ccesses, including cell proliferation, differentiation, and tumorigenesis. Their biological activities require interactions with several protein partners and the formation of functional Protein Structure Section, Macromolecular multiprotein complexes involved in DNA repair and cell cycle control. Members of the fam- Crystallography Laboratory, National Cancer ily (C/EBPα, β, δ, ε, and γ) bind to common DNA sequence motifs as homo- or hetero-dimers Institute at Frederick, Frederick, USA and interact with other transcription factors to control transcription of a number of eukary- otic genes. Of particular interest is C/EBPβ, which binds to closed chromatin and acts as Protein Structure Section, Macromolecular a pioneering factor for initiating tissue-specific gene expression at several promoters. This Crystallography Laboratory, National Cancer review focuses on intermolecular interactions that underlie C/EBPβ’s ability to regulate chro- Institute at Frederick, Frederick, MD, 21702- matin accessibility and directs readers to general reviews describing transcription regulation 1201, USA; phone: (301) 846-5342, fax: (301) in eukaryotes. 846-6128, e-mail: [email protected] INTRODUCTION Received: June 2, 2016 Transcriptional machinery access to the core promoter region is restricted Accepted: June 29, 2016 in eukaryotic cells by the dense packing of chromatin. The barrier imposed by compacted chromatin is overcome by the concerted action of sequence-spe- Key words: transcription, C/EBPβ, chromatin cific DNA-binding transcription factors (TFs), which stimulate transcription remodeling, chromatin-modifying complexes of their target genes by regulating the assembly and/or activity of transcrip- Abbreviations: bZIP – basic region leucine zip- tional initiation complexes.
    [Show full text]