Nobelovy Ceny Za Fyziku - Obor Astrofyzika

Total Page:16

File Type:pdf, Size:1020Kb

Nobelovy Ceny Za Fyziku - Obor Astrofyzika MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA FYZIKY BAKALÁŘSKÁ PRÁCE NOBELOVY CENY ZA FYZIKU - OBOR ASTROFYZIKA Brno 2008 Vedoucí bakalářské práce: prof. RNDr. Vladislav Navrátil, CSc. Autor práce: Svobodová Petra 1 Bibliografický záznam Svobodová, Petra. Nobelovy za fyziku – obor astrofyzika: Bakalářská práce. Brno: Masarykova univerzita, Fakulta pedagogická, Katedra fyziky, 2008. 54s. Vedoucí bakalářské práce prof. RNDr. Vladislav Navrátil, Csc. Anotace Bakalářská práce “Nobelovy ceny za fyziku, obor astrofyzika” nabízí pohled na úspěchy astronomie prostřednictvím šesti ročníků Nobelových cen za fyziku, ve kterých získali ocenění právě astronomové. Cílem práce je stručný popis jednotlivých objevů jako je např. reliktní záření, pulzary, nebo vznik některých dílčích podoborů astronomie. Součástí práce je životopis Alfreda Nobela a nástin historického vývoje astronomie. Klíčová slova Alfred Nobel, historie astronomie, reliktní záření, pulzary, radioastronomie, rentgenová astronomie, neutrina, vývoj hvězd, družice COBE. Anotation The Bachelor thesis “ Nobel physics prizes, astrophysics field” offers look on successes in astronomy through six year's volume of Nobel physics prizes, in which astronomers were awarded. The goal of this thesis is a brief description of particular findings as relict radiation, pulsars or origin of some subfields of astronomy. Part of the thesis is a biography of Alfred Nobel and an outline of historical development of atronomys. Key words Alfred Nobel , history of astronomy, relict radiation, pulsars, radioastronomy, x – ray astronomy, neutrins, evolution of stars, satellite COBE. 2 PODĚKOVÁNÍ Děkuji prof. RNDr. Vladislavu Navrátilovy, CSc. za cenné rady a poznámky, které jsem při vypracování této bakalářské práce uplatnila a za poskytnutí potřebné literatury. 3 PROHLÁŠENÍ Prohlašuji, že jsem bakalárskou práci „Nobelovy ceny za fyziku – obor astrofyzika“ vypracovala samostatně podle pokynů vedoucího práce a s použitím literatury uvedené v seznamu. Souhlasím, aby práce byla uložena na Masarykově univerzitě v Brně v knihovně Pedagogické fakulty a zpřístupněna ke studijním účelům. Brno, 18. dubna 2008 . 4 NOBELOVY CENY ZA FYZIKU - OBOR ASTROFYZIKA Obsah: Úvod.............................................................................................................................6 Kapitola první.............................................................................................................7 1.1. Alfréd Nobel a Nobelova nadace.................................................................8 1.2. Stručný nástin dějin astronomie.................................................................13 Kapitola druhá..........................................................................................................21 2.1. Nobelova cena – rok 1974..........................................................................22 2.2. Nobelova cena – rok 1978..........................................................................28 2.3. Nobelova cena – rok 1983..........................................................................32 2.4. Nobelova cena – rok 1993..........................................................................36 2.5. Nobelova cena – rok 2002..........................................................................40 2.6. Nobelova cena – rok 2006..........................................................................50 Závěr...........................................................................................................................54 Literatura.....................................................................................................................55 Příloha.........................................................................................................................60 5 ÚVOD Jako téma své bakalářské práce jsem si zvolila Nobelovy ceny za fyziku. Neboť téma Nobelových cen je velmi rozsáhlé, svědčí o tom již 106 ročníků udělování tohoto prestižního ocenění, zaměřila jsem se ve své práci pouze na ceny udělené za významné objevy a příspěvky k rozvoji oboru astronomie, resp. astrofyziky. V práci bych chtěla čtenářům přiblížit podstatu jednotlivých oceněných objevů, které bezesporu měly zásadní vliv na vývoj astronomie a astrofyziky. Práce je dělena na dvě kapitoly, v první se čtenář dozví něco málo ze života zakladatele Nobelovy nadace Alfreda Nobela a z vývoje astronomie od nejstarších civilizací až po kosmické lety ve 20. století. Druhá kapitola je souhrnem jednotlivých ročníků Nobelových cen za fyziku pro obor astrofyzika. 6 KAPITOLA PRVNÍ Než se budeme věnovat jednotlivým ročníkům „astronomických nobelovek“ podívejme se nejprve na život člověka, bez jehož vynalézavosti, pracovního úsilí a snahy o lepší svět by nebylo Nobelovy nadace. 7 1.1. ALFRED NOBEL A NOBELOVA NADACE Kdyby měl student Alfred Nobel psát svůj životopis mohl by začínat nějak takto: Narodil jsem se 21. října 1833 ve Stokholmu ve Švédsku. S otcem Imanuelem Nobelem, podnikatelem a vynálezcem a matkou Andrietou Nobelovou, bydlím v Petrohradě, metropoli carského Ruska. Mám tři bratry, Ludwiga, Roberta a Emila Oskara. Nikdy, s vyjímkou jednoho roku, jsem nechodil do školy. Společně se svými bratry jsem měl domácí učitele... I přes časté finanční problémy rodiny, otec musel několikrát vyhlásit bankrot, se chlapcům dostalo velmi dobrého vzdělání. Díky tomu Obr.1 Alfred Nobel /46/ Alfred již v sedmnácti letech ovládal plynně pět jazyků, kromě rodné švédštiny také ruštinu,angli- čtinu, francouzštinu a němčinu a disponoval výbornými znalostmi z oblasti fyziky a chemie. Samozřejmě nebylo zanedbáno i vzdělání ve filosofii, historii a literatuře, která byla jeho velkou vášní. Nasvědčují tomu i literární pokusy v pozdějších letech (básně, novely, divadelní hra Nemesis a další). V letech 1850-52 absolvoval mladý Alfred studijní cestu po Spojených státech, Švédsku, Německu, Francii a Itálii. Zde měl možnost pracovat s řadou významných osobností tehdejší vědy. V New Yorku se setkal se švédským vynálezcem Johnem Ericssonem (konstruktér parních motorů a pancéřové lodi Monitor) a v Paříži pracoval v laboratoři slavného francouzkého profesora Théophile-Jules Pelouziho (autor chemických příruček). Během svého pařížského pobytu se seznamuje s mladým italským chemikem Ascanio Sobrerem, který o tři roky dříve, v roce 1847, objevil nitroglycerin. Jistě Alfréd Nobel tehdy ani netušil, že se tato tekutina stane jeho životním osudem. V následujících letech se věnoval práci pro otcovu firmu v Petrohradě, kam se rodina v jeho devíti letech přestěhovala. Během Krymské války (1853-56) se Nobelově firmě dařilo a mladý Nobel byl neustále na obchodních cestách, neboť ho otec ustanovil 8 obchodním zástupcem. Procestoval řadu evropských zemí i část Ruska. Jeho chatrné zdraví ho zavedlo i do českých zemí, na léčebné pobyty ve Františkových Lázních a Chebu. Po válce se poměry pro podnikání v Rusku změnily natolik, že Imanuel Nobel musel opět vyhlásit bankrot firmy. A díky svým soudním sporům s carem byl nakonec nucen z Petrohradu odejít zpět do Stokholmu. Nyní se mohl Alfred Nobel plně věnovat svému výzkumu. V roce 1857 přihlásil svůj první patent, plynoměr, a další záhy následovaly. Ve svém výzkumu se zaměřil na využití nitroglycerinu, jako trhaviny, jenž nahradí dosavadní výbušné směsi. Úspěchy se brzy dostavily a v roce 1863 přihlašuje první patenty výbušných nytroglycerinových směsí. Ovšem jak už to v životě bývá, za každý úspěch se platí a Alfred Nobel zaplatil vysokou cenu. Při pokusech s nitroglycerinem v laboratoři v Helenbergu dochází k výbuchu. Mezi mrtvými je i Alfredův mladší bratr Emil Oskar. V roce 1867 patentuje svoji tzv. „bezpečnostní trhavinu“ - dynamit (jedná se o směs niroglycerinu a křemeniny, která zabraňuje náhodným výbuchům, dnes je křemenina nahrazena jinými porézními látkami). O dynamit byl velký zájem a tudíž nic nebránilo v rozmachu Nobelova imperia. Nobel staví závody na výrobu dynamitu ve dvaceti zemích světa, např. USA, Německu. Kromě výzkumu nitroglycerinu se věnuje i jiným oblastem vědy. Jeho zájmu neuniknou měřící přístroje a laboratorní technika, stejně tak jako i výroba umělého hedvábí a umělých drahokamů, konstrukce raket či výzkum transfuze krve. Jeho vědeckou mnohostranost, nezdolnou píli a vynalézavého ducha dokládá množství patentů, které za svůj život nashromáždil, celkem 355. V historii bychom jistě našli jen málo vědců a vynálezců počtem patentů převyšujících Alfreda Nobela. Na rozdíl od života pracovního, v němž slavil úspěchy, byl Nobelův soukromý život velkým fiaskem. Nepodařilo se mu založit rodinu, což můžeme přičítat velkému pracovnímu nasazení, stejně tak jako jeho plachosti a samotářské povaze. Je dobře známa jeho ostýchavost vůči ženám, kterou v životě překonal jen dvakrát. A to ve vztahu k Berthe Kinské (později provdané von Suttnerové), s kterou udržoval přátelský vztah do konce života, a mladičké Sofii Hessové. Jedinou ženou, ke které po celý život choval hluboký citový vztah, byla jeho matka, jejíž smrt v roce 1889 ho velmi zasáhla. Alfred Nobel umírá na krvácení do mozku dne 10. prosince 1896 ve své vile v San Remu, sám, obklopen pouze služebnictvem. Nobel celý život usiloval o mírové využití svých vynálezů. Životní zkušenost ho 9 dovedla k názoru, že člověk, disponující velkým kapitálem, by měl část věnovat na humanitární učely, podporu vědy a boj proti bídě, to vše s jedinou konečnou vizí lepší společnosti a trvalého míru. Svému názoru dostál a v závěti ustanovil zřízení nadace, jenž by ocenila počiny pro blaho společnosti. Vznik Nobelovy
Recommended publications
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • Investigation and Analysis of Gravitational Waves Using Data from the Lvt151012 Event
    INVESTIGATION AND ANALYSIS OF GRAVITATIONAL WAVES USING DATA FROM THE LVT151012 EVENT Joalda Morancy September 11th, 2017 Pioneer Academics: Summer 2017 Mentor: Eric Myers ABSTRACT The LVT151012 event produces numerous questions on its validity due to various factors. In this paper, I investigate this and analyze the LIGO data for this specific event. I will first give background on what gravitational waves are and how they’re measured, my methodology in investigating the event, and a conclusion of my results. This paper is targeted at anyone who is interested in learning about gravitational waves and has a basic understanding of physics. INTRODUCTION On October 12th, 2015, LIGO made its second detection of gravitational waves. This event, known as LVT151012, is theorized to be the result of the inspiral of two black holes in a binary system of 23 and 13 solar masses (Figure 1). This event isn’t confirmed completely yet, which is the reason why it is given the acronym LVT, meaning “LIGO-Virgo Trigger”, and not GW like others, which stands for “Gravitational Wave” [1]. Figure 1: Graphic showing the number of solar masses of all known gravitational wave detections, including the LVT151012 event. [2] A major difference between this specific detection and others is that the confidence is significantly lower, and it is not enough to make the cut for an official detection. The confidence level is 1.7σ, and the traditional amount that a detection has to be greater than is 5σ. LVT151012 also has a much greater distance compared to all other detections, which comes out to be approximately 1000 Mpc.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • The Cosmic Microwave Background: the History of Its Experimental Investigation and Its Significance for Cosmology
    REVIEW ARTICLE The Cosmic Microwave Background: The history of its experimental investigation and its significance for cosmology Ruth Durrer Universit´ede Gen`eve, D´epartement de Physique Th´eorique,1211 Gen`eve, Switzerland E-mail: [email protected] Abstract. This review describes the discovery of the cosmic microwave background radiation in 1965 and its impact on cosmology in the 50 years that followed. This discovery has established the Big Bang model of the Universe and the analysis of its fluctuations has confirmed the idea of inflation and led to the present era of precision cosmology. I discuss the evolution of cosmological perturbations and their imprint on the CMB as temperature fluctuations and polarization. I also show how a phase of inflationary expansion generates fluctuations in the spacetime curvature and primordial gravitational waves. In addition I present findings of CMB experiments, from the earliest to the most recent ones. The accuracy of these experiments has helped us to estimate the parameters of the cosmological model with unprecedented precision so that in the future we shall be able to test not only cosmological models but General Relativity itself on cosmological scales. Submitted to: Class. Quantum Grav. arXiv:1506.01907v1 [astro-ph.CO] 5 Jun 2015 The Cosmic Microwave Background 2 1. Historical Introduction The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson, reported in Refs. [1, 2], has been a 'game changer' in cosmology. Before this discovery, despite the observation of the expansion of the Universe, see [3], the steady state model of cosmology still had a respectable group of followers.
    [Show full text]
  • Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
    universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors.
    [Show full text]
  • The Struggle for Quantum Theory 47 5.1Aliensignals
    Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore.
    [Show full text]
  • Neutron Stars
    Neutron Stars and their importance in the general scheme of physics J.R.Stone Oxford/Tennessee/Oak Ridge OUTLINE: I. Compact objects: white dwarfs, neutron stars and black holes Collapse of massive stars Pulsars II. Cooling of proto-neutron stars and formaon of microscopic make-up of the star. Possible exoc stars III. Theorecal models of neutron stars and their impact in the general context of physics. Type II supernovae core collapse: forms a neutron star or a black hole. A BIT OF HISTORY: 1931: Collapse of red giants and white dwarfs are known. White dwarfs (1910 – Henry Norris Russel, named 1922 Willem Luyten): When red giants consume all their accessible fuel, the cores of the stars shrink to a very hot very dense object – not a star in technical sense: Mass ~ 1 solar mass , radius ~ 7000 km Energy comes from gravitaonal contracSon Radiaon comes from emission of stored heat (not fusion reacSons) Example: Sirius B (Hubble image) Material Density in kg/m3 Notes Water (fresh) 1,000 At STP Osmium 22,610 Near room temperature The core of the Sun ~150,000 White dwarf star 1 × 109 Atomic nuclei 2.3 × 1017 Neutron star core 8.4 × 1016 − 1 × 1018 Black hole 2 × 1030 CriScal density of an Earth-mass black hole Final stage of stars which are not very massive (over 97% of stars of our Galaxy): I. Hydrogen-fusing (main-sequence star of low or medium mass below 9-10 solar masses) II. Helium fusing to carbon and oxygen red giant in the core by the triple alpha process III.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • November 2019
    A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September.
    [Show full text]
  • Mysteries of the Universe
    Mysteries of the Universe Harry Ringermacher, Ph.D. General Electric Research Center Schenectady, NY Elliott-Nowell-White Science Symposium Oct. 11, 2012 Overview • Astronomy 101 - Scales of distance, light measure • The “Big-Bang Universe” – how we see • What do we know about Dark Matter and Dark Energy ? • The search for Dark Matter “Astronomy 101” Andromeda galaxy photo by H. Ringermacher Milky Way scaled against our nearest neighbor galaxy, Andromeda 100,000 Ly 1 light year = distance light travels in 1 year 6,000,000,000,000 miles Time-line of the Universe Wilkinson Microwave Anisotropy Probe – WMAP (2001) Cosmic Background Explorer COBE – forerunner (1989) WMAP produced unprecedented images of the earliest light in the universe – the Cosmic Microwave Background (CMB) What did WMAP discover? • Universe is 13.7 billion years old , (± 1%) • First stars ignited 200 million years after the Big Bang . • Light in the WMAP picture is from 379,000 years after the Big Bang . • Content of the Universe: 4% Atoms, 23% Cold Dark Matter, 73% Dark Energy . • The Universe will expand forever (it is “flat”) and is accelerating . • The nature of the Dark Energy and Dark Matter is still a mystery . 2006 Nobel Prize in Physics Blackbody from and anisotropy of the Cosmic Microwave Background Radiation John Mather George Smoot NASA Goddard UC Berkeley The Accelerating Universe • How do we measure the speed of expansion? • Astronomers use “Standard Candles” • Astronomers use the brightest “candle” SUPERNOVA 2011 Nobel Prize in Physics Discovery of the accelerating expansion of the universe through observations of distant supernovae Brian Schmidt, Australian Nat’l U.
    [Show full text]
  • Characterization of the Nonlinear Light Emission by the Liquid Scintillator Used in the Daya Bay Experiment
    Diplomarbeit Characterization of the Nonlinear Light Emission by the Liquid Scintillator Used in the Daya Bay Experiment Ausgeführt an der Technischen Universität Wien unter Anleitung von Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Badurek in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory unter Anleitung von Prof. Herbert Steiner und Dr. Daniel Dwyer durch Christian Dorfer Patergassen 63 9564 Reichenau Ort, Datum Unterschrift Abstract This thesis has been prepared within the Daya Bay group at the Lawrence Berkeley National Laboratory in California. It describes the measurement of the nonlinearity in light emission by a linear alkylbenze-based liquid scintillator in response to electrons with kinetic energies from ∼0.2 to ∼1.0 MeV. The electrons were generated inside the liquid scintillator volume via Compton scattering of 1.332 MeV gamma rays emitted by a 2.59 MBq 60Co radioactive source. A Compton spectrometer was designed and custom-built to scan over the full range of electron energies. Geant4-based simulations were used to optimize the spectrometer design and estimate systematic effects from energy loss and multiple scattering. The ratio of light emitted relative to the electron’s kinetic energy was found to be (17.59±1.24) % lower at 0.2 MeV compared to 1.0 MeV, demonstrating significant nonlinearity. This precision determination of scintillator nonlinearity will facilitate the improved measurement of reactor antineutrino oscillation by the Daya Bay experiment. Kurzfassung Diese Forschung für diese Arbeit wurde in der Daya Bay Gruppe des Lawrence Berkeley National Laboratory in Kalifornien durchgeführt. Die Arbeit beschreibt die Messung der nichtlinearen Lichtemission von auf flüssigem Alkylbenzol-basierten Szintillator bei Anregung durch energetis- che Elektronen zwischen ∼0.2 und ∼1 MeV.
    [Show full text]
  • NSF Sensational 60
    Cover credits Background: © 2010 JupiterImages Corporation Inset credits (left to right): Courtesy Woods Hole Oceanographic Institution; Gemini Observatory; Nicolle Rager Fuller, National Science Foundation; Zee Evans, National Science Foundation; Nicolle Rager Fuller, National Science Foundation; Zina Deretsky, National Science Foundation, adapted from map by Chris Harrison, Human-Computer Interaction Institute, Carnegie Mellon University; Tobias Hertel, Insti- tute for Physical Chemistry, University of Würzburg Design by: Adrian Apodaca, National Science Foundation 1 Introduction The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. Congress passed legislation creating the NSF in 1950 and President Harry S. Truman signed that legislation on May 10, 1950, creating a government agency that funds research in the basic sciences, engineering, mathematics and technology. NSF is the federal agency responsible for nonmedical research in all fields of science, engineering, education and technology. NSF funding is approved through the federal budget process. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF has an independent governing body called the National Science Board (NSB) that oversees and helps direct NSF programs and activities. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. NSF is the funding source for approximately 20 percent of all federally supported basic research conducted by America’s colleges and universities. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly. NSF has a total workforce of about 1,700 at its Arlington, Va., headquarters, including approximately 1,200 career employees, 150 scientists from research institutions on temporary duty, 200 contract workers and the staff of the NSB office and the Office of the Inspector General.
    [Show full text]