Determining Dose Rate with a Semiconductor Detector - Monte Carlo Calculations of the Detector Response
Total Page:16
File Type:pdf, Size:1020Kb
SE9900106 FOA-R--99-01035-861 --SE February 1999 FOA ISSN 1104-9154 DEFENCE RESEARCH Technical Report ESTABLISHMENT Charlotte Nordenfors Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response Division of NBC Defence SE-901 82 UMEA DEFENCE RESEARCH ESTABLISHMENT FOA-R--99-01035-861-SE Division of NBC Defence February 1999 SE-901 82 UMEA ISSN 1104-9154 SWEDEN Charlotte Nordenfors Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response Distribution: SkyddS, SSI Issuing organization Document ref. No., ISRN Defence Research Establishment FO A-R--99-01035-861 -SE Division of NBC Defence Date of issue Project No. SE-901 82 UMEA February 1999 E415 SWEDEN Project name (abbrev. if necessary) Author(s) Initiator or sponsoring organization FOA Charlotte Nordenfors Project manager Torbjorn Nylen Scientifically and technically responsible Thomas Ulvsand Document title Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response Abstract To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector owned by the department of Nuclear Weapon Issues and Radiaton Science at the Swedish National Defence Research Establishment in Umea. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 (Electron Gamma Shower, version 4) developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport with The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks. Keywords Dose rate,semiconductor detector, Monte Carlo methods, gamma ray spectromety, EGS4 Further bibliographic information Language English ISSN 1104-9154 ISBN Pages 77 p. Price Ace. to pricelist Distributor (if not issuing organization) Dokumentets utgivare Dokumentbeteckning, ISRN Försvarets forskningsanstalt FOA-R-99-01035-861--SE Avdelningen för NBC-skydd Dokumentets datum Uppdragsnummer 901 82 UMEÅ Februari 1999 E415 Projektnamn (ev förkortat) Upphovsman(män) Uppdragsgivare FOA Charlotte Nordenfors Projektansvarig Torbjörn Nylén Fackansvarig Thomas Ulvsand Dokumentets titel i översättning Dosratsbestämning med halvledar-detektor - Monte Carlo beräkning av detektor respons Sammanfattning För att bestämma dosrat i ett gammastrålfält baserat på mätningar med en halvledardetektor måste man känna till hur detektorn påverkar strålfältet. Målet med det här arbetet är att beskriva denna påverkan med hjälp av Monte Carlo simulering och beräkning d.v.s. ta fram detektorns responsfunktion. Detta görs för en germanium gammadetektor som ägs av institutionen för kärnvapenfrågor och strålningsvetenskap vid Försvarets forskningsanstalt i Umeå. Detektorn används normalt vid de in-situ mätningar som görs regelbundet vid institutionen. Då responsfunktionen är känd används den för att rekonstruera ett uppmätt spektrum. När detta är gjort kan fluensrat och dosrat beräknas direkt från det uppmätta (och rekonstruerade) spektrumet. Monte Carlo-koden som används i arbetet är EGS4 (Electron Gamma Shower, version 4) som utvecklats huvudsakligen vid Stanford Linear Accelerator Center. Det är ett ofta använt programpaket för simulering av partikeltransport. Resultaten pekar på att metoden kan användas som den är eftersom noggrannheten kan jämföras med metoder som redan används för att mäta dosrat. Med tanke på att denna metod ger den isotopspecifika dosen är den användbar, i strålskyddssammanhang, eftersom det är viktigt att känna till relationerna mellan olika isotoper och hur dessa ändras då riskuppskattningar görs. Nyckelord Dosrat, halvledardetektor, Monte Carlo-metoder, EGS4, gamma spektrometri Övriga bibliografiska uppgifter Språk Engelska ISSN 1104-9154 ISBN Omfång 77 s. Pris Enligt prislista Distributör (om annan än ovan) V.1.1 Contents Preface vii 1 Introduction 1 2 Gamma-ray spectrometry 3 2.1 Photon interactions 3 2.1.1 Photoelectric absorption 3 2.1.2 Compton scattering 4 2.1.3 Pair production 5 2.2 Contributions to the detector response .... 6 2.2.1 The very large detector 7 2.2.2 The very small detector 7 2.2.3 The real detector 8 2.2.4 Summing up the detector response . 9 2.3 Semiconductor detectors 10 2.3.1 The portable high purity germanium de- tector 11 3 The theory of unfolding the response function 15 3.1 The unfolding 15 3.2 How to find the inherent response function . 17 4 EGS4 - The Monte Carlo package 19 4.1 A summary of capabilities and features .... 19 4.2 How to use EGS4 20 4.3 PEGS4 - data preparation 21 4.4 DOSRZ - a User Code 22 5 Calculations 25 5.1 The detector model 25 5.2 Input parameters 30 vi CONTENTS 5.3 The output 32 6 Results of the unfolding 35 6.1 The procedure 35 6.2 Comparison with point source measurements . 35 6.3 In-situ measurements and angular dependence 36 6.4 Discussion 37 7 Conclusions 39 7.1 Further developments 39 References 40 A Detector data 43 B Input and output from EGS4 49 B.I .egs4inp 49 B.2 .egs41st 53 B.3 .egs4eff 58 C Calculations 61 C.I DOSRZ - the regions of the detector model . 61 C.2 Empirical values of the efficiency 62 D Unfolding 63 D.I Point source 63 E Wave programs 65 E.I The point source unfolding 65 E.2 The in-situ unfolding 66 E.3 Fixing the vector with the measured spectrum 68 E.4 Making the matrix 69 Preface This work is a master thesis within the Physical Engineering program at Umea University and is done at the department of nuclear weapon issues and radiation science within the Na- tional Defence Research Establishment (FOA) in Umea. Su- pervisor is Thomas Ulvsand together with Goran Agren and Kenneth Lidstrom. The examinator is Lennart Olofsson, de- partment of radiation physics at Umea University. The au- thor likes to thank all of the above for the help with this work and Hans Holmstrom for patience and help with UNIX and computer related questions. vn Chapter 1 Introduction There is a need for efficient methods to determine radioactiv- ity in the environment e.g. after nuclear accidents or for large area surveys. One such method is gamma-ray spectrometry performed in the contaminated environment, so called in-situ spectrometry. The measurements are done near the radioac- tive source and usually one meter above the ground. This kind of spectrometry is used to determine the activity levels in the ground or in the air. The method of in-situ gamma-ray spectrometry has been widely used after the reactor accidents at Three Mile Island (USA, 1979) and Chernobyl (USSR, 1986). Especially the latter convinced many of the necessity for quick and reliable methods to determine radionuclide contamination. Perhaps even more important for the spread of the method is the de- velopment of portable high purity germanium detectors that are easy to handle and available at a reasonable cost. A de- scription of these detectors is found in section 2.3 below. To judge the biological effect the radiation has on for ex- ample humans it is of interest to find the radionuclide specific as opposed to the total dose rate in an area. So in some ap- plications of radiation protection it would desirable to mea- sure the radionuclide specific dose rate distribution directly by in-situ gamma-ray spectrometry. The result of a measure- ment with a germanium detector is a pulse-height distribu- tion which represents the spectral distribution of the energy deposition events in its active volume. A substantial fraction of these events corresponds to photons that only deposited a fraction of their incoming energy. Also, the detector dis- 1 CHAPTER 1. INTRODUCTION turbs the measurements due to interaction between the in- coming photons and the detector housing and cooling system. This leads to a superposition of counts coming from full en- ergy deposition of radiation scattered in the environment with counts corresponding to partial energy deposition events (sec- tion 2.2). All this has to be taken in to account in order to obtain the photon fiuence rate spectrum and consequently the dose rate spectrum. By applying an unfolding procedure to the measured pulse- height distribution, in which the partial energy deposition events are subtracted, a conversion to fiuence is made. This unfolding procedure requires an accurate and detailed knowl- edge of the response of the detector to monoenergetic photons of energies in the range of the spectrum. The theoretical back- ground to the unfolding and how the response function can be calculated using Monte Carlo methods is described in chapter 3. The goal of the present work is to determine the response function, for one of the two germanium detectors in use at department 41, and to unfold a measured spectrum. One widely used general purpose Monte Carlo package is EGS4, (Electron Gamma Shower version 4), and it is de- scribed in chapter 4 together with the usercode DOSRZ that is used in this work to sample the pulse-height distribution in a model of the detector.