1. Gamma-Ray Detectors for Nondestructive Analysis P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ZEPLIN I—The UKDM Single Phase Xenon Experiment at Boulby Neil Spooner∗ Department of Physics and Astronomy University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
ZEPLIN I—The UKDM Single Phase Xenon Experiment at Boulby Neil Spooner∗ Department of Physics and Astronomy University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK I briefly review the ZEPLIN I liquid xenon detector of the UKDM collaboration. 1. ZEPLIN I Detector The ZEPLIN I detector is a single phase, 3.6 kg fiducial mass, liquid xenon scintillation detector built by the UKDM Collaboration (RAL-Sheffield-ICSTM) and running at the Boulby underground site (see Figure 1). The target mass is housed in a Cu-101 copper vessel, shaped to maximise light collection, which provides a uniform temperature environment through the use of a cryo- liquid jacket. The fiducial volume of xenon is surrounded bya5mmPTFE reflector, giving diffuse scattering of the 175 nm scintillation photons to maximise light collection. This volume is viewed through 3 mm silica windows by three quartz windowed photomultipliers through optically isolated Œturrets¹ of liquid xenon. These act both as light guides and passive shielding for the X-ray emission from the photomultipliers. The novel use of the xenon turrets arose from experience with NaI detectors where solid high-grade silica is used for light guides and shields. However, the extensive use of such material for liquid xenon is precluded due to the absorption of the 175 nm photons. Scintillation light produced in the turret regions is seen predominantly by the nearest photomultiplier which allows the rejection of the photomultiplier X-ray events and the definition of a fiducial volume through a comparison of the light seen by each tube. Purification of the xenon is performed using Oxysorb ion exchange columns with additional purification by vacuum pumping on frozen xenon and subsequent fractionation of the xenon gas. -
Muon Decay 1
Muon Decay 1 LIFETIME OF THE MUON Introduction Muons are unstable particles; otherwise, they are rather like electrons but with much higher masses, approximately 105 MeV. Radioactive nuclear decays do not release enough energy to produce them; however, they are readily available in the laboratory as the dominant component of the cosmic ray flux at the earth’s surface. There are two types of muons, with opposite charge, and they decay into electrons or positrons and two neutrinos according to the rules + + µ → e νe ν¯µ − − µ → e ν¯e νµ . The muon decay is a radioactiveprocess which follows the usual exponential law for the probability of survival for a given time t. Be sure that you understand the basis for this law. The goal of the experiment is to measure the muon lifetime which is roughly 2 µs. With care you can make the measurement with an accuracy of a few percent or better. In order to achieve this goal in a conceptually simple way, we look only at those muons that happen to come to rest inside our detector. That is, we first capture a muon and then measure the elapsed time until it decays. Muons are rather penetrating particles, they can easily go through meters of concrete. Nevertheless, a small fraction of the muons will be slowed down and stopped in the detector. As shown in Figure 1, the apparatus consists of two types of detectors. There is a tank filled with liquid scintillator (a big metal box) viewed by two photomultiplier tubes (Left and Right) and two plastic scintillation counters (flat panels wrapped in black tape), each viewed by a photomul- tiplier tube (Top and Bottom). -
3 Gamma-Ray Detectors
3 Gamma-Ray Detectors Hastings A Smith,Jr., and Marcia Lucas S.1 INTRODUCTION In order for a gamma ray to be detected, it must interact with matteu that interaction must be recorded. Fortunately, the electromagnetic nature of gamma-ray photons allows them to interact strongly with the charged electrons in the atoms of all matter. The key process by which a gamma ray is detected is ionization, where it gives up part or all of its energy to an electron. The ionized electrons collide with other atoms and liberate many more electrons. The liberated charge is collected, either directly (as with a proportional counter or a solid-state semiconductor detector) or indirectly (as with a scintillation detector), in order to register the presence of the gamma ray and measure its energy. The final result is an electrical pulse whose voltage is proportional to the energy deposited in the detecting medhtm. In this chapter, we will present some general information on types of’ gamma-ray detectors that are used in nondestructive assay (NDA) of nuclear materials. The elec- tronic instrumentation associated with gamma-ray detection is discussed in Chapter 4. More in-depth treatments of the design and operation of gamma-ray detectors can be found in Refs. 1 and 2. 3.2 TYPES OF DETECTORS Many different detectors have been used to register the gamma ray and its eneqgy. In NDA, it is usually necessary to measure not only the amount of radiation emanating from a sample but also its energy spectrum. Thus, the detectors of most use in NDA applications are those whose signal outputs are proportional to the energy deposited by the gamma ray in the sensitive volume of the detector. -
Scintillation Detectors for X-Rays
INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 17 (2006) R37–R54 doi:10.1088/0957-0233/17/4/R01 REVIEW ARTICLE Scintillation detectors for x-rays Martin Nikl Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague, Czech Republic Received 23 March 2005 Published 10 February 2006 Online at stacks.iop.org/MST/17/R37 Abstract Recent research in the field of phosphor and scintillator materials and related detectors is reviewed. After a historical introduction the fundamental issues are explained regarding the interaction of x-ray radiation with a solid state. Crucial parameters and characteristics important for the performance of these materials in applications, including the employed measurement methods, are described. Extended description of the materials currently in use or under intense study is given. Scintillation detector configurations are further briefly overviewed and selected applications are mentioned in more detail to provide an illustration. Keywords: luminescence intensity, luminescence kinetics, light detection, x-ray detection, scintillators, phosphors, traps and material imperfections (Some figures in this article are in colour only in the electronic version) 1. Introduction development of phosphor and scintillator materials to be used in their exploitation. It was 110 years ago in November 1895 that Wilhelm Conrad It is to be noticed that for registration of x-ray the so- Roentgen noticed the glow of a barium platino-cyanide screen, called direct registration principle is widely used, in which the placed next to his operating discharge tube, and discovered new incoming radiation is directly converted into electrical current invisible and penetrating radiation [1], which was named x-ray in a semiconducting material. -
DRC-2016-012921.Pdf
CLN-SRT-011 R1.0 Page 2 of 33 Introduction ................................................................................................................................ 3 Sources of Radiation .................................................................................................................. 3 Radiation: Particle vs Electromagnetic ....................................................................................... 5 Ionizing and non- ionizing radiation ............................................................................................ 8 Radioactive Decay ....................................................................................................................10 Interaction of Radiation with Matter ...........................................................................................15 Radiation Detection and Measurement .....................................................................................17 Biological Effects of Radiation ...................................................................................................18 Radiation quantities and units ...................................................................................................18 Biological effects .......................................................................................................................20 Effects of Radiation by Biological Organization .........................................................................20 Mechanisms of biological damage ............................................................................................21 -
Portable Front-End Readout System for Radiation Detection
Portable Front-End Readout System for Radiation Detection by Maris Tali THESIS for the degree of MASTER OF SCIENCE (Master in Electronics) Faculty of Mathematics and Natural Sciences University of Oslo June 2015 Det matematisk- naturvitenskapelige fakultet Universitetet i Oslo Portable Front-End Readout System for Radiation Detection Maris Tali Portable Front-End Readout System for Radiation Detection Maris Tali Portable Front-End Readout System for Radiation Detection Acknowledgements First of all, I would like to thank my advisor, Ketil Røed, for giving me the opportunity to write my master thesis on such an interesting and challenging subject as radiation instrumentation and measurement. I would also like to thank him for his insight and guidance during my master thesis and for the exciting opportunities during my studies to work in a real experimental environment. I would also like to thank the Electronic Laboratory of the University of Oslo, specif- ically Halvor Strøm, David Bang and Stein Nielsen who all gave me valuable advice and assistance and without whom this master thesis could not have been finished. Lastly, I would like to thank the co-designer of the system whom I worked together with during my master thesis, Eino J. Oltedal. It is customary to write that half of ones master thesis belongs to ones partner. However, this is actually the case in this instance so I guess 2/3 of my master thesis is yours and I definitely could not have done this without you. So, thank you very much! Oslo, June 2015 Maris Tali I Maris Tali Portable Front-End Readout System for Radiation Detection Contents Acknowledgments I Glossary VI List of Figures X List of Tables X Abstract XI 1 Introduction 1 1.1 Background and motivation . -
Neutrino Detection with Liquid Scintillator Detectors
Neutrino Detection with Liquid Scintillator Detectors Minfang Yeh Neutrino and Nuclear Chemistry Chemistry/Instrumentation BNL VIRTUAL SYMPOSIUM FOR ETI/MTV CONSORTIA, 2021 Neutrino and Nuclear Chemistry at BNL since 1960+ 37 37 - HOMESTAKE 615t Cl + νe → Ar + e 71 71 - Gallex 30-t Ga + νe → Ge + e 780t D2O CC/NC SNO 200-kt H2O or 37-kt LAr LBNE (DUNE) 120-t 8% In-LS LENS 200-t 0.1% Gd-LS Daya Bay 780t 0.3% Nd/Te-LS SNO+ 6Li, 10B or Gd doped LS PROSPECT/LZ Metal-doped WbLS and 0νββ, dark-matter, AIT- plastic scintillator resins NEO, medical Water-based LS Scintillator Radiochemical Cerenkov 1960 1970 1980 1990 2000 2010 2020 M Yeh, BNL VIRTUAL SYMPOSIUM 2 LZ (Gd-doped) Dark Matter BNL-ν-Map SD, USA by liquid scintillator detectors AIT-NEO (WbLS) Boulby, UK JSNS2 (Gd-doped) SNO+ (Te-doped) Kamioka, Japan ANNIE Sudbury Canada (WbLS) BNL FNAL Daya Bay (Gd- doped), China PROSPECT (6Li-doped ), ORNL, TN, USA Cover a wide range of physics topics! neutrinos, dark matter, 0νββ, nonproliferation, medical physics,… M Yeh, BNL VIRTUAL SYMPOSIUM 3 Scintillation Mechanism S. Hans, J. Cumming, R. Rosero, S. Gokhale, R. Diaz, C. Camilo, M. Yeh, Light-yield quenching and remediation in liquid scintillator detectors, 2020 JINST 15 P12020 fast slow Stokes shift, photon-yield, timing structure, and C/H density determine the detector responses M Yeh, BNL VIRTUAL SYMPOSIUM 4 Scintillator Components C. Buck and M. Yeh, J. Phys. G: Nucl. Part. Phys. 43 093001 (2016) 200tons of Daya Bay Gd-LS produced in 2010; stable since production. -
Cosmic Ray Detector Hardware
Cosmic Ray Detector Hardware How it detects cosmic rays, what it measures and how to use it… Matthew Jones Purdue University 2012 QuarkNet Summer Workshop 1 What are Cosmic Rays? • Mostly muons down here… • Why are they called “rays”? – Purely historical • How can we detect them? – Muons are like heavy electrons – They have an electric charge – “Ionizing radiation”… – Some of their energy is transferred to the electrons in the material the move through – That’s what we detect… 2 Detecting Ionizing Radiation Cloud Chamber Solid State Geiger Counters Detectors Bubble Chamber Radiation creates Ion Chambers electron/hole pairs in Ionization initiates a silicon or germanium physical change in a that allow a current to gas or liquid. Wire Chambers flow. Photographic Film Crystal Scintillator GEM Detectors Photographic Organic An electric field does Emulsion Scintillator WORK on ionized gas Recombination of atoms to produce a Ionization initiates a electrons and ions voltage pulse. chemical reaction. produces light! 3 Plastic Scintillator 4 Plastic Scintillator • See, for example, Saint-Gobain, Inc. • Clear plastic traps light by total internal reflection. • Doped with a secret chemical that emits light when ionized, but does not re-absorb it. • Easy to cut, polish, bend, glue… • How much light is produced? – A muon travelling through 1 cm of plastic scintillator might produce about a thousand photons – Most of them would be blue – They bounce around inside the scintillator until they either escape or are absorbed • Usually wrapped in tin foil or white paper and then in black plastic or opaque paper to keep other light out. 5 The Cosmic Ray Detector Plastic scintillator wrapped in white paper and black plastic. -
Semiconductor Detectors Silvia Masciocchi GSI Darmstadt and University of Heidelberg
Semiconductor detectors Silvia Masciocchi GSI Darmstadt and University of Heidelberg 39th Heidelberg Physics Graduate Days, HGSFP Heidelberg October 10, 2017 Semiconductor detector: basics IONIZATION as in gas detectors → Now in semiconductors = solid materials with crystalline structure (Si, Ge, GaAs) → electron-hole pairs (instead of electron-ion) + use microchip technology: structures with few micrometer precision can be produced at low cost. Read-out electronics can be directly bonded to the detectors + only a few eV per electron-hole pair → 10 times more charge produced (wrt gas) → better energy resolution + high density compared to gases → need only thin layers (greater stopping power) – apart from silicon, the detectors need to be cooled (cryogenics) – crystal lattices → radiation damage [email protected] Semiconductor detectors, October 11, 2017 2 Applications Main applications: ● γ spectroscopy with high energy resolution ● Energy measurement of charged particles (few MeV) and particle identification (PID) via dE/dx (multiple layers needed) ● Very high spatial resolution for tracking and vertexing A few dates: 1930s – very first crystal detectors 1950s – first serious developments of particle detectors 1960s – energy measurement devices in commerce [email protected] Semiconductor detectors, October 11, 2017 3 Semiconductor detectors: outline ● Principle of operation of semiconductor detectors ● Properties of semiconductors (band structure) ● Intrinsic material ● Extrinsic (doped) semiconductors ● p-n junction ● Signal generation ● Energy measurement with semiconductor detectors ● Position measurement with semiconductor detectors ● Radiation damage [email protected] Semiconductor detectors, October 11, 2017 4 Principle of operation ● Detector operates as a solid state ionization chamber ● Charged particles create electron-hole pairs ● Place the crystal between two electrodes that set up an electric field → charge carriers drift and induce a signal ● Less than 1/3 of energy deposited goes into ionization. -
Internal and External Exposure Exposure Routes 2.1
Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body. -
A Direct Search for Dark Matter with the Majorana Demonstrator
A DIRECT SEARCH FOR DARK MATTER WITH THE MAJORANA DEMONSTRATOR Kristopher Reidar Vorren A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics. Chapel Hill 2017 Approved by: Reyco Henning Chris Clemens Jonathan Engel Christian Iliadis John F. Wilkerson c 2017 Kristopher Reidar Vorren ALL RIGHTS RESERVED ii ABSTRACT Kristopher Reidar Vorren: A Direct Search for Dark Matter with the Majorana Demonstrator (Under the direction of Reyco Henning) The Majorana Demonstrator is a neutrinoless double-beta decay experiment cur- rently operating 4850 ft underground in the Sanford Underground Research Facility in Lead, SD. Sub-keV thresholds and excellent low-energy resolution are features of the p-type point- contact high-purity germanium detectors deployed by Majorana, making them ideal for use in direct dark matter searches when combined with Majorana's ultra-low backgrounds. An analysis of data from a 2015 commissioning run of the Demonstrator with 478 kg d of exposure was performed to search for mono-energetic lines in the detectors' energy-spectrum from bosonic dark matter absorption. No dark matter signature was found in the 5-100 keV range, and upper limits were placed on dark bosonic pseudoscalar and vector-electric cou- plings. The same analysis produced null results and upper limits for three additional rare- event searches: Pauli-Exclusion Principle violating decay, solar axions, and electron decay. Improvements made to Majorana since commissioning will result in increased sensitivity to rare-event searches in future analyses. -
Study of Electron Emissions of Some Mass Separated Fission Product Activities James Paul Adams Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Study of electron emissions of some mass separated fission product activities James Paul Adams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons Recommended Citation Adams, James Paul, "Study of electron emissions of some mass separated fission product activities " (1972). Retrospective Theses and Dissertations. 5880. https://lib.dr.iastate.edu/rtd/5880 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.