Internal and External Exposure Exposure Routes 2.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Committee Reports 2005 Midyear Meeting
2004-2005 MIDYEAR REPORT Academic Education Committee Health Physics Society Mark Rudin - Chair Report Prepared by Mark J. Rudin, Ph.D. January 11, 2005 Abstract The Academic Education Committee (AEC) has been and continues to be very active in a number of areas. Accomplishments/activities during the first half of the 2004-2005 time period included: 1. Administration of Health Physics Society (HPS) Fellowship and Travel Grant Awards 2. Maintenance of Student Branch Programs 3. A fifth health physics program participated in the Applied Science Accreditation Commission (ASAC) of the American Board for Engineering and Technology, Inc. (ABET) accreditation process. Page 220 Report Outline: I. Recommendations for Action II. Subcommittee Assignments for 2004-2005 III. Progress Reports 2003-2004 HPS Fellow Selections 2003-2004 Student Travel Grants Student Branch Program Health Physics Education Reference Book Health Physics Program Directors Organization Accreditation Sub-Committee Revision of the Careers in Health Physics brochure I. Recommendations for Action 1. The Committee anxiously awaits the approval of its Rules/Operating Procedures. Once the rules are approved, the AEC will be able to appoint individuals from the AEC Subcommittee on Accreditation to the ANS and the American Academy of Health Physics. John Poston and Rich Brey have agreed to serve as the liasions for the ANS and Academy, respectively. 2. Chuck Roessler has graciously served as the HPS Commissioner on the Applied Sciences Accreditation Commission (ASAC) of ABET for two terms (2003-04 and 2004-05). Note that ASAC is the ABET commission under which accreditation of Health Physics Academic Programs is conducted. Commissioner terms are for one year with members eligible for reappointment for up to five terms. -
Nuclear Threat
MANAGEMENT OF RADIOLOGIC CASUALTIES Nuclear Threat . Formerly .Soviet Union .Nuclear fallout . Now .NBC threat against civilians .Accidental exposure of workers and public Images: CIA, FBI Accidental Exposure in Brazil . Cesium-137 source found by scavengers in 1987 . Source broken open, contents shared . 112,800 surveyed for contamination . 120 externally contaminated only . 129 internally & externally contaminated . 20 required hospital treatment . 14 developed bone marrow depression . 8 treated with Granulocyte Macrophage Colony-Stimulating Factors (GM-CSF) . 4 died acute phase, hemorrhage, infection . 1 died in 1994 from liver failure Images: CIA Medical Staff Exposure Medical staff received doses: . Maximum 500 millirem (5 millisieverts) .Natural background radiation dose ~ 200 millirems annually . Average 20 millirem (0.2 millisieverts) .Equivalent to one chest X-ray Juarez, Mexico Incident . 400 curies of cobalt-60 in stainless steel therapy device sold for scrap . Ended up in recycled steel rebar . Wrong turn into Los Alamos lab . I0 people significantly exposed . 1 construction worker died .bone cancer . 109 houses demolished in Mexico Images: CIA US Experience 1944-1999 . 243 radiation accidents leading to “serious” classification . 790 people received significant exposure resulting in 30 fatalities .Incidents included: . 137 industrial . 80 medical . 11 criticality Image: DOE The Basics of Radiation Radiation is energy that comes from a source and travels through matter or space Radioactivity is the spontaneous emission of radiation: . Either directly from unstable atomic nuclei, or . As a consequence of a nuclear reaction, or . Machine – produced (X-ray) Image: NOAA Contamination . Defined as internal or external deposition of radioactive particles . Irradiation continues until source removed by washing, flushing or radioactive decay . -
Section 1: Introduction (PDF)
SECTION 1: Introduction SECTION 1: INTRODUCTION Section 1 Contents The Purpose and Scope of This Guidance ....................................................................1-1 Relationship to CZARA Guidance ....................................................................................1-2 National Water Quality Inventory .....................................................................................1-3 What is Nonpoint Source Pollution? ...............................................................................1-4 Watershed Approach to Nonpoint Source Pollution Control .......................................1-5 Programs to Control Nonpoint Source Pollution...........................................................1-7 National Nonpoint Source Pollution Control Program .............................................1-7 Storm Water Permit Program .......................................................................................1-8 Coastal Nonpoint Pollution Control Program ............................................................1-8 Clean Vessel Act Pumpout Grant Program ................................................................1-9 International Convention for the Prevention of Pollution from Ships (MARPOL)...................................................................................................1-9 Oil Pollution Act (OPA) and Regulation ....................................................................1-10 Sources of Further Information .....................................................................................1-10 -
Personal Radiation Monitoring
Personal Radiation Monitoring Tim Finney 2020 Radiation monitoring Curtin staff and students who work with x-ray machines, neutron generators, or radioactive substances are monitored for exposure to ionising radiation. The objective of radiation monitoring is to ensure that existing safety procedures keep radiation exposure As Low As Reasonably Achievable (ALARA). Personal radiation monitoring badges Radiation exposure is measured using personal radiation monitoring badges. Badges contain a substance that registers how much radiation has been received. Here is the process by which a user’s radiation dose is measured: 1. The user is given a badge to wear 2. The user wears the badge for a set time period (usually three months) 3. At the end of the set time, the user returns the badge 4. The badge is sent away to be read 5. A dose report is issued. These steps are repeated until monitoring is no longer required. Badges are supplied by a personal radiation monitoring service provider. Curtin uses a service provider named Landauer. In addition to user badges, the service provider sends control badges that are kept on site in a safe place away from radiation sources. The service provider reads each badge using a process that extracts a signal from the substance contained in the badge to obtain a dose measurement. (Optically stimulated luminescence is one such process.) The dose received by the control badge is subtracted from the user badge reading to obtain the user dose during the monitoring period. Version 1.0 Uncontrolled document when printed Health and Safety Page 1 of 7 A personal radiation monitoring badge Important Radiation monitoring badges do not protect you from radiation exposure. -
Radiation Risk in Perspective
PS010-1 RADIATION RISK IN PERSPECTIVE POSITION STATEMENT OF THE HEALTH HEALTH PHYSICS SOCIETY* PHYSICS SOCIETY Adopted: January 1996 Revised: August 2004 Contact: Richard J. Burk, Jr. Executive Secretary Health Physics Society Telephone: 703-790-1745 Fax: 703-790-2672 Email: [email protected] http://www.hps.org In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose of 5 rem1 in one year or a lifetime dose of 10 rem above that received from natural sources. Doses from natural background radiation in the United States average about 0.3 rem per year. A dose of 5 rem will be accumulated in the first 17 years of life and about 25 rem in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels. There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 5–10 rem (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent. In part because of the insurmountable intrinsic and methodological difficulties in determining if the health effects that are demonstrated at high radiation doses are also present at low doses, current radiation protection standards and practices are based on the premise that any radiation dose, no matter how small, may result in detrimental health effects, such as cancer and hereditary genetic damage. -
Sources and Emissions of Air Pollutants
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Chapter 2 Sources and Emissions of Air Pollutants LEArning ObjECtivES By the end of this chapter the reader will be able to: • distinguish the “troposphere” from the “stratosphere” • define “polluted air” in relation to various scientific disciplines • describe “anthropogenic” sources of air pollutants and distinguish them from “natural” sources • list 10 sources of indoor air contaminants • identify three meteorological factors that affect the dispersal of air pollutants ChAPtEr OutLinE I. Introduction II. Measurement Basics III. Unpolluted vs. Polluted Air IV. Air Pollutant Sources and Their Emissions V. Pollutant Transport VI. Summary of Major Points VII. Quiz and Problems VIII. Discussion Topics References and Recommended Reading 21 2 N D R E V I S E 9955 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 22 Chapter 2 SourCeS and EmiSSionS of Air PollutantS i. IntrOduCtiOn level. Mt. Everest is thus a minute bump on the globe that adds only 0.06 percent to the Earth’s diameter. Structure of the Earth’s Atmosphere The Earth’s atmosphere consists of several defined layers (Figure 2–1). The troposphere, in which all life The Earth, along with Mercury, Venus, and Mars, is exists, and from which we breathe, reaches an altitude of a terrestrial (as opposed to gaseous) planet with a per- about 7–8 km at the poles to just over 13 km at the equa- manent atmosphere. The Earth is an oblate (slightly tor: the mean thickness being 9.1 km (5.7 miles). Thus, flattened) sphere with a mean diameter of 12,700 km the troposphere represents a very thin cover over the (about 8,000 statute miles). -
Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants
plants Article Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants Hong-Il Choi 1,† , Sung Min Han 2,†, Yeong Deuk Jo 1 , Min Jeong Hong 1 , Sang Hoon Kim 1 and Jin-Baek Kim 1,* 1 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; [email protected] (H.-I.C.); [email protected] (Y.D.J.); [email protected] (M.J.H.); [email protected] (S.H.K.) 2 Division of Ecological Safety, National Institute of Ecology, Seocheon 33657, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-63-570-3313 † Both authors contributed equally to this work. Abstract: The response to gamma irradiation varies among plant species and is affected by the total irradiation dose and dose rate. In this study, we examined the immediate and ensuing responses to acute and chronic gamma irradiation in rice (Oryza sativa L.). Rice plants at the tillering stage were exposed to gamma rays for 8 h (acute irradiation) or 10 days (chronic irradiation), with a total irradiation dose of 100, 200, or 300 Gy. Plants exposed to gamma irradiation were then analyzed for DNA damage, oxidative stress indicators including free radical content and lipid peroxidation, radical scavenging, and antioxidant activity. The results showed that all stress indices increased immediately after exposure to both acute and chronic irradiation in a dose-dependent manner, and acute irradiation had a greater effect on plants than chronic irradiation. The photosynthetic efficiency and growth of plants measured at 10, 20, and 30 days post-irradiation decreased in irradiated plants, Citation: Choi, H.-I.; Han, S.M.; Jo, Y.D.; Hong, M.J.; Kim, S.H.; Kim, J.-B. -
Effects of Gamma-Irradiation of Seed Potatoes on Numbers of Stems and Tubers
Netherlands Journal of Agricultural Science 39 (1991) 81-90 Effects of gamma-irradiation of seed potatoes on numbers of stems and tubers A. J. HAVERKORT1, D. I. LANGERAK2 & M. VAN DE WAART1 1 Centre for Agrobiological Research (CABO-DLO), P.O. Box 14, NL 6700 AA Wagenin- gen, Netherlands 2 State Institute for Quality Control of Agricultural Products (RIKILT), P.O. Box 230, NL 6700 AE Wageningen, Netherlands Received 28 november 1990; accepted 8 February 1991 Abstract In field trials with the cultivars Bintje, Jaerla and Spunta, whose seed potatoes were treated with gamma-rays from a ^Co source with doses varying from 0.5 to 27 Gy, tuber yield, har vest index, and number of stems and tubers were determined. A dose of 3 Gy increased the number of tubers by 30 % in Spunta in two out of three trials and by 17 % in one trial in Jaer la, but it did not increase number of tubers in Bintje. Doses of 9 or 10 Gy did not influence the number of tubers nor stems, and decreased harvest index. A dose of 27 Gy yielded off-type plants with reduced yield and number of tubers. Gamma-radiation affected the growth of the apex of the sprout allowing lateral buds or divisions of the affected apex to develop into stems. To achieve larger numbers of tuber-bearing stems, tubers should preferably be irra diated at the start of sprout growth, about 5 months before planting. Keywords: harvest index, gamma irradiation, seed potatoes Introduction Effects of different doses of gamma-rays on potato tubers have been studied exten sively, especially in the 1960s. -
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams Frequently Asked Questions Introduction In August of 2021, the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) jointly released the following position statement advising against using information about a patient’s previous cumulative dose information from medical imaging exams to decide the appropriateness of future imaging exams. This statement was also endorsed by the Radiological Society of North America (RSNA). It is the position of the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) that the decision to perform a medical imaging exam should be based on clinical grounds, including the information available from prior imaging results, and not on the dose from prior imaging-related radiation exposures. AAPM has long advised, as recommended by the International Commission on Radiological Protection (ICRP), that justification of potential patient benefit and subsequent optimization of medical imaging exposures are the most appropriate actions to take to protect patients from unnecessary medical exposures. This is consistent with the foundational principles of radiation protection in medicine, namely that patient radiation dose limits are inappropriate for medical imaging exposures. Therefore, the AAPM recommends against using dose values, including effective dose, from a patient’s prior imaging exams for the purposes of medical decision making. Using quantities such as cumulative effective dose may, unintentionally or by institutional or regulatory policy, negatively impact medical decisions and patient care. This position statement applies to the use of metrics to longitudinally track a patient’s dose from medical radiation exposures and infer potential stochastic risk from them. -
Security Operational Skills 2 (Tracing).P65
Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites -
The Design and Construction of an Ionization Chamber to Measure Background Radiation
AN ABSTRACT OF THE THESIS OF KENNETH EARL WEAVER for theMaster of Science (Name of Student) (Degree) in General Science (Radiological Physics) presented on August 19, 1968 (Major) (Date) Title: THE DESIGN AND CONSTRUCTION OF AN IONIZATION CHAMBER TO MEASURE BACKGROUND RADIATION Redacted for privacy Abstract approved: John P. Kelley An ionization chamber was constructed, using a fiberglass wall sphere, for the purpose of measuring background radiation.The system consists of the fiberglass wall chamber, 38.85 liters in volume, air filled, not sealed, used in conjunction with a precision capacitor, nulling voltage supply and electrometer.It was calibrated against a Shonka, 16.5 liter, muscle-equivalent, sealed ionization chamber in conjunction with a Shonka electrometer. Measurements made over a period extending from July 22 to July 29, 1968 in a second floor laboratory (X-ray Science and Engi- neering Laboratory, Oregon State University) with the fiberglass chamber yielded a mean dose rate of 7.96± 0.21 p. rads/hr.Meas- urements made over the same period with the Shonka system yielded a mean dose rate of 7.73 0.07 y, rads/hr. The Shonka system was also used to measure background radiation as a function of time from December 14, 1967 to June 10, 1968.The mean value obtained over this period was 7.73 ± 0.10 11 rads/hr. The Design and Construction of an Ionization Chamber to Measure Background Radiation by Kenneth Earl Weaver A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1969 APPROVED: Redacted for privacy Associate Professor of Electrical Engin4ring in charge of major Redacted for privacy -Chairman of the Dp-partment of Gene/''al ScienyCe Redacted for privacy Dean of Graduate School Date thesis is presented August 19, 1968 Typed by Carolyn Irving for Kenneth Earl Weaver ACKNOWLEDGMENT The author wishes to express hissincere appreciation to Mr. -
Multi-Organ Involvement and Failure in Selected Accident Cases with Acute Radiation Syndrome Observed at the Mayak Nuclear Facility
DOI: 10.1259/bjr/84574102 Multi-organ involvement and failure in selected accident cases with acute radiation syndrome observed at the Mayak Nuclear Facility T V AZIZOVA, MD, PhD, N G SEMENIKHINA, MD and M B DRUZHININA Southern Ural Biophysics Institute, Ozyorsk, Russia Abstract. Mayak Production Association (Mayak PA) in the Southern Ural is the first Russian nuclear facility of plutonium production for weapons. Due to the lack of knowledge and experience in operating nuclear facilities, 19 radiation accidents including criticality accidents occurred and 59 individuals developed acute radiation syndrome (ARS) during commissioning and development of Mayak PA (1948–1958). Severe accidents that occurred at this facility are reviewed, and the initial symptoms and clinical courses of ARS in victims are discussed from the perspective of multi-organ involvement and failure. Introduction reactors with fuel rod manipulations. 3 of 19 accidents (16%) were accompanied by a spontaneous chain reaction. Whole body exposure to high doses of radiation causes In 19 accidents, 49 men and 10 women developed ARS, acute radiation syndrome (ARS) involving multiple organs and 6 men and 1 woman died of ARS. and tissues. Development of modern medicine, including intensive care, allows patients highly exposed to radiation to survive longer than before. However, the experience of Criticality accidents at Mayak PA during 1948–1958 the Tokai-mura criticality accident that occurred in Japan in 1999 raised problems in the treatment of heavily A criticality accident involving plutonium nitrate exposed victims. Treatment of the victims in this accident solution in an interim storage vessel has demonstrated that bone marrow failure is not neces- On 15 March 1953 an accident occurred in a building sarily a restricting factor for recovery, but that multi-organ where processing was being carried out to recover involvement and failure is likely to be such a factor.