Benefit-Function of Two- Identical Cold Standby Nuclear Reactors System Subject to Failure Due to Radioactivity Or Overheating, Steam Explosion, Fire, and Meltdown
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security Operational Skills 2 (Tracing).P65
Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites -
Medical Association for Prevention of War BRIEFING PAPER
Medical Association for Prevention of War BRIEFING PAPER NUCLEAR POWER AND PUBLIC HEALTH By Peter Karamoskos MBBS, FRANZCR1 May 2010 “… there is a linear dose-response relationship between exposure to ionizing radiation and the development of solid cancers in humans. It is unlikely that there is a threshold below which cancers are not induced.” – National Academy of Science, BEIR VII report, 2006 “We need to develop a very firm commitment to the elimination of nuclear power as a source of energy on the earth.” – Russell Train, former US Environmental Protection Agency administrator, 1977 “[t]he [economic] failure of the U.S. nuclear power program ranks as the largest managerial disaster in business history, a disaster on a monumental scale.” – Forbes, 1985 1 Nuclear Radiologist; Treasurer, Medical Association for the Prevention of War (MAPW) & Treasurer, International Campaign for the Abolition of Nuclear Weapons (ICAN); Public representative, Radiation Health Committee, Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) [For informational purposes and does not represent an endorsement by ARPANSA of this document.] Medical Association for Prevention of War Introduction without heavy tax-payer subsidies and loan The public health implications for a resurgence of guarantees. Throughout this period however, nuclear power appear to have taken a subordinate public health concerns increased on a backdrop of position to the economic and global warming reactor safety concerns and the effects of ionising arguments that the industry has advanced to radiation on the surrounding populations, with ten justify its expansion. The purpose of this essay core meltdowns in various nuclear reactors, therefore is several-fold: to review the scientific including several in nuclear power reactors, evidence for public health impacts of nuclear culminating in the Chernobyl disaster of 1986. -
Learning from Fukushima: Nuclear Power in East Asia
LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA EDITED BY PETER VAN NESS AND MEL GURTOV WITH CONTRIBUTIONS FROM ANDREW BLAKERS, MELY CABALLERO-ANTHONY, GLORIA KUANG-JUNG HSU, AMY KING, DOUG KOPLOW, ANDERS P. MØLLER, TIMOTHY A. MOUSSEAU, M. V. RAMANA, LAUREN RICHARDSON, KALMAN A. ROBERTSON, TILMAN A. RUFF, CHRISTINA STUART, TATSUJIRO SUZUKI, AND JULIUS CESAR I. TRAJANO Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Learning from Fukushima : nuclear power in East Asia / Peter Van Ness, Mel Gurtov, editors. ISBN: 9781760461393 (paperback) 9781760461409 (ebook) Subjects: Nuclear power plants--East Asia. Nuclear power plants--Risk assessment--East Asia. Nuclear power plants--Health aspects--East Asia. Nuclear power plants--East Asia--Evaluation. Other Creators/Contributors: Van Ness, Peter, editor. Gurtov, Melvin, editor. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press. Cover image: ‘Fukushima apple tree’ by Kristian Laemmle-Ruff. Near Fukushima City, 60 km from the Fukushima Daiichi Nuclear Power Plant, February 2014. The number in the artwork is the radioactivity level measured in the orchard—2.166 microsieverts per hour, around 20 times normal background radiation. This edition © 2017 ANU Press Contents Figures . vii Tables . ix Acronyms and abbreviations . -
Chernobyl Template.Qxd 16/09/2019 11:08 Page 39
9Chernobyl_Template.qxd 16/09/2019 11:08 Page 39 39 Chernobyl On 3 February 1987, during a lecture trip to Japan, I was invited to meet five members of the Japan Atomic Industrial Forum Inc. Zhores Medvedev They wanted to discuss my book, Nuclear Disaster in the Urals, which described the consequences of the Kyshtym disaster, an On 8 August 2019, a explosion at a nuclear waste site in the deadly nuclear explosion Soviet Union in 1957. took place in northern The book, published in New York in 1979 Russia in the vicinity of and translated into Japanese in 1982, was the Nenoksa weapons then still the only published description of testing range. At least five this accident. The Kyshtym disaster was not people are said to have yet included in a list of nuclear accidents died. Subsequently, a prepared by the International Atomic Russian state weather Energy Agency (IAEA). Top of this list, agency confirmed release recorded at a topofthescale 7 in severity, into the atmosphere of was Chernobyl, Three Mile Island was strontium, barium and scale 5, and the fire at Windscale in other radioactive isotopes, England, in 1957, was scale 3. (The indicating that a nuclear International Nuclear Event Scale was reactor was involved in revised several times, subsequently, and the the explosion. fire at Windscale is now reckoned to be Zhores Medvedev died scale 5.) in 2018, before this recent In 1987, I had already started to study the explosion. Back in 2011, available information on Chernobyl he charted a trail of because I was not satisfied with the Soviet nuclear disasters from Report to the IAEA, which blamed mainly Kyshtym in the the power station personnel for gross Cheliabinsk region of operational errors. -
Multi-Organ Involvement and Failure in Selected Accident Cases with Acute Radiation Syndrome Observed at the Mayak Nuclear Facility
DOI: 10.1259/bjr/84574102 Multi-organ involvement and failure in selected accident cases with acute radiation syndrome observed at the Mayak Nuclear Facility T V AZIZOVA, MD, PhD, N G SEMENIKHINA, MD and M B DRUZHININA Southern Ural Biophysics Institute, Ozyorsk, Russia Abstract. Mayak Production Association (Mayak PA) in the Southern Ural is the first Russian nuclear facility of plutonium production for weapons. Due to the lack of knowledge and experience in operating nuclear facilities, 19 radiation accidents including criticality accidents occurred and 59 individuals developed acute radiation syndrome (ARS) during commissioning and development of Mayak PA (1948–1958). Severe accidents that occurred at this facility are reviewed, and the initial symptoms and clinical courses of ARS in victims are discussed from the perspective of multi-organ involvement and failure. Introduction reactors with fuel rod manipulations. 3 of 19 accidents (16%) were accompanied by a spontaneous chain reaction. Whole body exposure to high doses of radiation causes In 19 accidents, 49 men and 10 women developed ARS, acute radiation syndrome (ARS) involving multiple organs and 6 men and 1 woman died of ARS. and tissues. Development of modern medicine, including intensive care, allows patients highly exposed to radiation to survive longer than before. However, the experience of Criticality accidents at Mayak PA during 1948–1958 the Tokai-mura criticality accident that occurred in Japan in 1999 raised problems in the treatment of heavily A criticality accident involving plutonium nitrate exposed victims. Treatment of the victims in this accident solution in an interim storage vessel has demonstrated that bone marrow failure is not neces- On 15 March 1953 an accident occurred in a building sarily a restricting factor for recovery, but that multi-organ where processing was being carried out to recover involvement and failure is likely to be such a factor. -
Illllllllll DK9700033
Nordisk Nordisk Pohjoismamen Nordic kerne- karn- ydin- nuclear sikkerheds- sakerhcts- turvallisuus- safety forskning forskning uitkimus research RAK-2 NKS/RAK-2(96)TR-C3 Illllllllll DK9700033 Accidents in Nuclear Ships P. L. 01gaard Rise National Laboratory DK-4000 Roskilde, Denmark Institute of Physics Technical University of Denmark DK-2800 Lyngby, Denmark December 1996 Abstract This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events is considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10"3 per ship reactor year It is finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. -
Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters
City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2015 Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters Timothy Taylor CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/365 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Consequence Management: Evaluating and Developing International Responses to Nuclear and Radiological Disasters By Timothy Taylor May 2015 Master’s Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of International Relations (MA) at the City College of New York Advisor: Jean Krasno, PhD 1 Acknowledgments This research could not have happened without the inspiration and help of so many people. First and foremost, I want to acknowledge my academic and thesis advisor, Dr. Jean Krasno, for being a driving force for this research, as well as for my academic and professional success. Her level of knowledge and expertise within the field of International Relations is only surpassed by her love and compassion for others, especially those whom she inspires through her teaching. I would also like to acknowledge Dr. Barry J. Balleck for pushing me as an undergraduate student to pursue research and a graduate degree. Dr. Balleck helped me to hone my research and writing skills in International Studies, and to analyze critical global issues as a policy-maker. I will always value my friendship with him and the Balleck family. -
PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148)
PNNL-26497 PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148) May 2017 BA Rathbone SM Morley JA Stephens PNNL-26497 PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Site (IER-148) BA Rathbone SM Morley JA Stephens May 2017 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Abstract The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and utilized the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) situated on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screening methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. -
Process Criticality Accident Likelihoods, Magnitudes and Emergency Planning - a Focus on Solution Accidents
JAERI - Conf 2003 - 019 JP0450155 Process Criticality Accident Likelihoods, Magnitudes and Emergency Planning - A Focus on Solution Accidents Thomas P. McLaughlin Los Alamos National Laboratory, Los Alamos, NM 87544, USA tpmlanl.gov or tpmpobox.com ABSTRACT This paper presents analyses and applications of data from reactor and critical experiment research on the dynamics of nuclear excursions in solution media. Available criticality accident information is also discussed and shown to provide strong evidence of the overwhelming likelihood of accidents in liquid media over other forms and to support the measured data. These analyses are shown to provide valuable insights into key parameters important to understanding solution excursion dynamics in general and in evaluating practical upper bounds on criticality accident magnitudes. This understanding and these upper bounds are directly applicable to the evaluation of the consequences of postulated criticality accidents. These bounds are also essential in order to comply with national and international consensus standards and regulatory requirements for emergency planning. 1. Introduction the realistic bounds on the magnitudes and time durations, i.e., power histories, of potential Evaluation of criticality accident risks in criticality accidents. the processing of significant quantities of fissile Past experimental series, KEWB and materials is both complex and subjective. It can only CRAC,3,4) and ongoing excursion studies, SILENE, be properly accomplished by criticality specialists TRACY, and SHEBA' 6,7) provide a wealth of working closely with operations staff to thoroughly information directly applicable to estimating understand and then evaluate both the normal and accident power histories (i.e., source terms) and the spectrum of credible off-normal or upset consequences from site-specific liquid process conditions. -
Regulatory Guide 3.35, Revision 1
Revision 1 U.S. NUCLEAR REGULATORY COMMISSION July 1979 :*REGULATORY GUIDE OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 335 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A PLUTONIUM PROCESSING AND FUEL FABRICATION PLANT A. INTRODUCTION will review the proposal and approve its use, if found acceptable. Section 70.22, "Contents of Applications," of 10 CFR Part 70, "Domestic Licensing of Special B. DISCUSSION Nuclear Materials," requires, that each appli- cation for a license to possess and use special In the process of reviewing applications for nuclear material in a plutonium processing and permits and licenses authorizing the construc- fuel fabrication plant contain a description and tion or operation of plutonium processing and safety assessment of the design bases of the fuel fabrication plants, the NRC staff has principal structures, systems, and components developed a number of appropriately conser- of the plant. Section 70.23(a)(3) states that vative assumptions that are used by the staff applications will be approved if the Commission to evaluate an estimate of the radiological determines that, among other factors, the consequences of various postulated accidents. applicant's proposed equipment and facilities These assumptions are based on previous are adequate to protect health and minimize accident experience, engineering judgment, danger to life and property, and Sec- and on the analysis of applicable experimental tion 70.23(b) states that the Commission will results from safety research programs. This approve construction of the principal struc- guide lists assumptions used by the staff to tures, systems, and components of the plant evaluate the magnitude and radiological conse- when the Commission has determined that the quences of a criticality accident in a plutonium design bases of the principal structures, sys- processing and fuel fabrication plant. -
Radioecological Consequences After a Hypothetical Accident with Release
StrålevernRapport • 2011:3 Radioecological consequences after a hypothetical accident with release into the marine environment involving a Russian nuclear submarine in the Barents Sea Reference: Iosjpe M., Reistad O., Liland A. Radioecological consequences after a hypothetical accident with release into the marine environment involving a Russian nuclear submarine in the Barents Sea StrålevernRapport 2011:3. Østerås: Statens strålevern, 2011. Key words: Radioactivity, submarine, accident, cinsequences, concentration, doses, marine, biota Abstract: The report presents results concerning the potential consequences of a hypothetical accident involving a modern Russian submarine. Referanse: Iosjpe M., Reistad O., Liland A. Radioecological consequences after a hypothetical accident with release into the marine environment involving a Russian nuclear submarine in the Barents Sea StrålevernRapport 2011:3. Østerås: Statens strålevern, 2011. Language: English. Emneord: Radioaktivitet, ubåt, ulykke, konsekvenser, konsentrasjon, doser, marint, biota Resymé: Rapporten viser resultater angående konsekvenser etter potensiell ulykke med moderne russisk ubåt. Head of project: Mikhail Iosjpe Approved: Per Strand, director, Department for Emergency Preparedness and Environmental Radioactivity 32 pages. Published 2011-04-20. Printed number 20 (11-04). Cover design: LoboMedia AS. Printed by LoboMedia AS, Oslo. Cover illustration: Statens strålevern/Inger Sandved Arnfinsen www.koboltdesign.no Orders to: Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Østerås, Norway. Telephone +47 67 16 25 00, fax + 47 67 14 74 07. E-mail: [email protected] www.nrpa.no ISSN 0804-4910 (print) ISSN 1891-5191 (online) Innhold/Contents 8 8 11 12 12 14 15 21 23 25 The report presents results pertaining to a risk assessment of the potential consequences of a hypothetical accident involving a modern Russian submarine. -
Ornl/Nsic-176
4 ggcBvePBtnc APR 291980 ORNL/NSIC-176 MASTER Descriptions of Selected Accidents that Have Occurred at Nuclear Reactor Facilities H. W. Bertini and Members of the Staff of the Nuclear Safety Information Center NUCLFAR SAFETY INFORMATION CENTER DIEmu'lhj \i 'uNLIMIlt.il c ORNL/NSIC-176 Contract No. W-7405-eng-26 Engineering Technology Division DESCRIPTIONS OF SFLEuTED ACCIDENTS THAT HAVE OCCURRED AT NUCLEAR REACTOR FACILITIES H. W. Bertini and Members of the Staff of the Nuclear Safety Information Center Date Published: April 1980 Prepared by the OAK RIDGE NATIONAL LABORArORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OP ENERGY tP MTOWiOtl Cf THIS MCU«»T It IHWWTW iii CONTENTS (7 Page FOREWORD ...» v PREFACE . vli 1. INTRODUCTION 1 2. NUCLEAR REACTORS: FUNDAMENTALS .' 3 2.1 Basic Theory 3 2.2 The Components of a Nuclear Reactor 8 2.3 Radioactivity , 11 2.4 Electric Power Plants .... 16 2.5 Classification of Reactors 17 2.6 Light-Water Reactors for the Production of Electricity ..... 19 3. CENTRAL STATION POWER PLANTS. 32 3.1 Fuel Melting Incideat at the Fermi Reactor (1966) 32 3.2 Electrical Cable Fires at San Onofre 1 (1968) 33 3.3 Fuel Meltdown at St. Laurent (1969) 35 3.4 Uncovering of the Core at La Crosse (1970) 38 3.5 Seven Injured When Steam Nozzle Breaks at Robinson 2 (1970) 39 3.6 Discharge of Primary System into Drywell at Did 'en 2 (1970) 42 3.7 Turbine Damage Caused by Human Error at Robinson 2 (1970) 45 3.8 Construction Fire at Indian Point 2 (1971) 46 3.9 Valve Separations at Turkey Point 3 (1971) 47 3.10 Turbine Basement Flooded at Quad Cities V?I2) 48 3.11 Steam Generator Damaged in Hot Tests at Oconee 1 (1972) 49 3.12 Two Fatalities in Steam Line Accident at Surry 1 (1972) 50 3.13 Seawater Intrusion into Primary System at Millstone 1 (1972) ..