Semiconductor Detectors - an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Semiconductor Detectors - an Introduction Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title SEMICONDUCTOR DETECTORS - AN INTRODUCTION Permalink https://escholarship.org/uc/item/8vn2v63q Author Goulding, F.S. Publication Date 1978-04-01 eScholarship.org Powered by the California Digital Library University of California NOTICE 1 Tkk itfon Ml ptepued w an account of work •pouored by (he United Sum Government. Nrtthei the United Sutei not ft* United SUM Deptflment of SEMICONDUCTOR DETECTORS - AN INTRODUCTION* Eneigy, nor My of theft emptoytti, nor my of iheti LBL-7282 eantnclon, nibcoatricfon, o.- their employee], tukei •ny wtmnty, tiprtn or (replied, or utiana any lefaJ F. S. Goulding Ikbfliiy oi raponrtffity foi <heKcuncy,cttii|4ctene(( Of lacfulncM o( any information, apparatus, product or Lawrence Berkeley Laboratory piODcm dfcetaed, o( reprMenb thil !u tnr would not University of California infrinfc primely owned dtfiw. Berkeley, California 94720 I. History (i) To first order charge collection in a detector only occurs from regions where an electric Semiconductor detectors appeared on the scene' of field exists. Diffusion does occur from Nuclear Physics in about I960, although McKay of Bell field-free regions, but it is slow and its Laboratories had demonstrated the detection of alpha effects are usually undesirable. In junction particles by semiconductor diodes several years or surface-barrier (sometimes called Schottky- earlier. The earliest work, just prior to 1960, barrler) detectors, this means that the "de­ focused on relatively thin surface barrier germanium pletion layer" is the sensitive region of a detectors, used to detect short-range particles. detector. These detectors, used at low temperature to reduce leakage current, demonstrated the potential of semi­ (11) The thickness of a depletion layer 1 a semi­ conductor detectors to realize energy resolutions conductor diode is proportional to substantially better than the ionization (gas) chambers used earlier. Furthermore, the ability of a solid V if or Yv^P where V is the applied voltage, to stop particles in a very short distance and the N is the concentration of the dominant mpu- rugged nature of solid state devices suggested that rity in the semiconductor and p is its a small rugged detector might be feasible. resistivity. Thus, 1n the case of a detector made from p-type silicon having a resistivity Attention rapidly moved to silicon detectors of 2000 ftcm, (which is very pure by normal following this earlier work, largely because silicon, commercial silicon standards), an applied haying a considerably larger band-gap than germanium, voltage of 200 V yields a depletion layer offered the prospect of good performance at room thickness of only 200 urn (0.2 mm). This i: temperature. Silicon surface barrier detectors and, barely adequate to stop 15 MeV alpha oartfe-es somewhat later, diffused junction detectors, both or 4 MeV protons, so the use of such detec­ used at room temperature, therefore became the first tors is very limited even for particle types of semiconductor detectors used in nuclear experiments. spectroscopy and they rapidly proved their value as detectors of short-range particles. At this point, Fortunately, this limitation was rapidly circum- a little must be said about the limitations of these ventpd due to the work of Pell at General Electric, detectors - later in the course, the details will be who (for entirely unrelated purposes) demonstrated filled in. that lithium, an interstitial donor, could be drifted In an electric field at moderate temperatures to Nuclear Spectroscopy is largely a study of the virtually completely compensate the acceptors in energy level:; in the nucleus and the most profitable p-type silicon (and germanium). This work was tool for the study of these levels is to observe the rapidly exploited in semiconductor detectors to radiation emitted when transistions occur between produce lithium-drifted detectors with sensitive allowed levels. This radiation, In general, is in regions up to several millimeters thick. By 1961, the form of gamma rays, so detectors of gamra rays such detectors had become the primary spectroscopy are clearly the most powerful tool in such tool in charged particle experiments. investigations. Nal scintillation detectors had become important because of this, hut their rather The next major step was obvious, but was delayed poor energy resolution, which results in an inability by the feeling on the part of many of us working in to separate closely spaced levels, was a major the field that large-scale use of liquid nitrogen limitation. Silicon is a very poor material for was not acceptable. It was clear that lithium- gamma ray detection, since the gamma ray efficiency drifted germanium would provide the potential for varies roughly as Z5 (where Z is the atomic number high-resolution gamma-ray detection (albeit with much of the absorber) and Z is only 14 for silicon. smaller efficiencies than Nal scintillation detectors). Germanium would be a better material (Z = 28), but It was equally clear that the small band-gap of it was some time before this potential was realized. germanium would require low temperature operation. Therefore, it took some time for lithium-drifted The second major limitation in these earlier germanium gamtia-ray detectors to appear (1964) but detectors and still a limitation, although less when they did, they were exploited very rapidly and restrictive now, was the small thickness of the they must be regarded as the dominant tool in the sensitive region of the detectors which limited intensive period of nuclear spectroscopy In the mid their use to short-range particle detection. Of to late 1960's. course, the small thickness also limits the gamma ray detection efficiency, but in these early days In 1965, the first non-nuclear application of only charged particle detection was seriously semiconductor detectors started to develop. The considered. In the next part of this introduction, availability of low-noise field effect transistors I will discuss detector physics in a little more and their use with silicon detectors at low tempera­ detail; for the moment, two points should be noted: tures realized adequate energy resolution to resolve the characteristic K x-rays of most elements. This made development of the field of energy-dispersive x-ray fluorescence possible and has led to a large *This work was supported by the General Science and commerical business which impacts on many areas of Basic Research Division of the Department of Energy research far outside the nuclear area. under Contract No. K-7405-ENG-48. 0.. LBL-7282 The final detector development I want to discuss resolution than gas detectors, at least at higher is the development of very pure germanium which makes energies. At low energies, the fact that the signal possible thick germanium detectors without the need is 10 times larger means that electronic noise in the for lithium drifting. This work was initiated by electronic preamplifier is effectively smaller in R. N. Hall of General Electric In the early 1970's, relation to the signal. and it Is having a major impact at the present tine. Its value rests mainly on the fact that lithium Is Next, it is necessary to understand the importance veiy mobile in germanium at room temperature. of semiconductor junctions. If we consider a slice Consequently, the processing and handling of lithium- of silicon 1 cm2 In area and 1 mm thick and 2000 ilcm drifted germanium detectors is rendered quite diffi­ resistivity with ohmic contacts on each side, it is cult and multi-detector systems are hardly feasible. easy to see that we have a 200 n resistor. If 100 V High-purity germanium avoids these problems, so is applied across such a resistor, a current of 0.5 A detector arrays and telescopes of many detectors are will flow. Radiation Incident on the slice would feasible. Furthermore, with some reservations caused produce free holes and electrons, but any change 1n by potential surface contamination, high-purity current resulting from this would De infinitesimally germanium detectors can be cooled when required but small compared with the large steady current flowing warmed up to room temperature for storage. While through the device. This is 1n great contrast to the this fact should be used with caution due to the gas ionization chamber whose leakage current Is minute. potential problem of surface contamination. It does Semiconductor junctions provide the mechanism for over­ make possible the in-situ annealing of radiation coming this problem. damage which is a key factor in some very long-range particle telescope applications. Semiconductor Junctions are discussed In all courses on semiconductor physics and electronics, but In this rapid review, I have not discussed the emphasis Is slightly different 1n semiconductor materials other than silicon and germanium. Part detectors and matters are. In some respects, simpler. of the course will deal with this topic, but its The operation of junctions depends on the fact that impact on the field is only small at the present a mass action law compels the product of electron and time and the prospects for any major impact are not hole concentrations to be constant for j given semi­ good. conductor at a fixed temperature. Therefore, heavy doping with a donor not only increases the free elec­ Before closing this historical review, I should tron concentration, but also depresses the hole con­ perhaps draw your attention to the fact that the centration to satisfy the requirement that the pro­ nuclear research aspects of the use of detectors have duct must have a value dependent only on the become less predominant in recent years. Partly, semiconductor. For example, for silicon at room 10 this is because x-ray fluorescence analysis, environ­ temperature n-p =10 ; therefore, a region doped with mental survey work and space applications have all donors to a concentration of 10" will only contain ! become important, but it is because there has been a concentration of ~10 holes.
Recommended publications
  • 3 Gamma-Ray Detectors
    3 Gamma-Ray Detectors Hastings A Smith,Jr., and Marcia Lucas S.1 INTRODUCTION In order for a gamma ray to be detected, it must interact with matteu that interaction must be recorded. Fortunately, the electromagnetic nature of gamma-ray photons allows them to interact strongly with the charged electrons in the atoms of all matter. The key process by which a gamma ray is detected is ionization, where it gives up part or all of its energy to an electron. The ionized electrons collide with other atoms and liberate many more electrons. The liberated charge is collected, either directly (as with a proportional counter or a solid-state semiconductor detector) or indirectly (as with a scintillation detector), in order to register the presence of the gamma ray and measure its energy. The final result is an electrical pulse whose voltage is proportional to the energy deposited in the detecting medhtm. In this chapter, we will present some general information on types of’ gamma-ray detectors that are used in nondestructive assay (NDA) of nuclear materials. The elec- tronic instrumentation associated with gamma-ray detection is discussed in Chapter 4. More in-depth treatments of the design and operation of gamma-ray detectors can be found in Refs. 1 and 2. 3.2 TYPES OF DETECTORS Many different detectors have been used to register the gamma ray and its eneqgy. In NDA, it is usually necessary to measure not only the amount of radiation emanating from a sample but also its energy spectrum. Thus, the detectors of most use in NDA applications are those whose signal outputs are proportional to the energy deposited by the gamma ray in the sensitive volume of the detector.
    [Show full text]
  • 1. Gamma-Ray Detectors for Nondestructive Analysis P
    1. GAMMA-RAY DETECTORS FOR NONDESTRUCTIVE ANALYSIS P. A. Russo and D. T. Vo I. INTRODUCTION AND OVERVIEW Gamma rays are used for nondestructive quantitative analysis of nuclear material. Knowledge of both the energy of the gamma ray and its rate of emission from the unknown mass of nuclear material is required to interpret most measurements of nuclear material quantities. Therefore, detection of gamma rays for nondestructive analysis of nuclear materials requires both spectroscopy capability and knowledge of absolute specific detector response. Some techniques nondestructively quantify attributes other than nuclear material mass, but all rely on the ability to distinguish elements or isotopes and measure the relative or absolute yields of their corresponding radiation signatures. All require spectroscopy and most require high resolution. Therefore, detection of gamma rays for quantitative nondestructive analysis (NDA) of the mass or of other attributes of nuclear materials requires spectroscopy. A previous book on gamma-ray detectors for NDA1 provided generic descriptions of three detector categories: inorganic scintillation detectors, semiconductor detectors, and gas-filled detectors. This report described relevant detector properties, corresponding spectral characteristics, and guidelines for choosing detectors for NDA. The current report focuses on significant new advances in detector technology in these categories. Emphasis here is given to those detectors that have been developed at least to the stage of commercial prototypes. The type of NDA application – fixed installation in a count room, portable measurements, or fixed installation in a processing line or other active facility (storage, shipping/receiving, etc.) – influences the choice of an appropriate detector. Some prototype gamma-ray detection techniques applied to new NDA approaches may revolutionize how nuclear materials are quantified in the future.
    [Show full text]
  • DRC-2016-012921.Pdf
    CLN-SRT-011 R1.0 Page 2 of 33 Introduction ................................................................................................................................ 3 Sources of Radiation .................................................................................................................. 3 Radiation: Particle vs Electromagnetic ....................................................................................... 5 Ionizing and non- ionizing radiation ............................................................................................ 8 Radioactive Decay ....................................................................................................................10 Interaction of Radiation with Matter ...........................................................................................15 Radiation Detection and Measurement .....................................................................................17 Biological Effects of Radiation ...................................................................................................18 Radiation quantities and units ...................................................................................................18 Biological effects .......................................................................................................................20 Effects of Radiation by Biological Organization .........................................................................20 Mechanisms of biological damage ............................................................................................21
    [Show full text]
  • Portable Front-End Readout System for Radiation Detection
    Portable Front-End Readout System for Radiation Detection by Maris Tali THESIS for the degree of MASTER OF SCIENCE (Master in Electronics) Faculty of Mathematics and Natural Sciences University of Oslo June 2015 Det matematisk- naturvitenskapelige fakultet Universitetet i Oslo Portable Front-End Readout System for Radiation Detection Maris Tali Portable Front-End Readout System for Radiation Detection Maris Tali Portable Front-End Readout System for Radiation Detection Acknowledgements First of all, I would like to thank my advisor, Ketil Røed, for giving me the opportunity to write my master thesis on such an interesting and challenging subject as radiation instrumentation and measurement. I would also like to thank him for his insight and guidance during my master thesis and for the exciting opportunities during my studies to work in a real experimental environment. I would also like to thank the Electronic Laboratory of the University of Oslo, specif- ically Halvor Strøm, David Bang and Stein Nielsen who all gave me valuable advice and assistance and without whom this master thesis could not have been finished. Lastly, I would like to thank the co-designer of the system whom I worked together with during my master thesis, Eino J. Oltedal. It is customary to write that half of ones master thesis belongs to ones partner. However, this is actually the case in this instance so I guess 2/3 of my master thesis is yours and I definitely could not have done this without you. So, thank you very much! Oslo, June 2015 Maris Tali I Maris Tali Portable Front-End Readout System for Radiation Detection Contents Acknowledgments I Glossary VI List of Figures X List of Tables X Abstract XI 1 Introduction 1 1.1 Background and motivation .
    [Show full text]
  • Semiconductor Detectors Silvia Masciocchi GSI Darmstadt and University of Heidelberg
    Semiconductor detectors Silvia Masciocchi GSI Darmstadt and University of Heidelberg 39th Heidelberg Physics Graduate Days, HGSFP Heidelberg October 10, 2017 Semiconductor detector: basics IONIZATION as in gas detectors → Now in semiconductors = solid materials with crystalline structure (Si, Ge, GaAs) → electron-hole pairs (instead of electron-ion) + use microchip technology: structures with few micrometer precision can be produced at low cost. Read-out electronics can be directly bonded to the detectors + only a few eV per electron-hole pair → 10 times more charge produced (wrt gas) → better energy resolution + high density compared to gases → need only thin layers (greater stopping power) – apart from silicon, the detectors need to be cooled (cryogenics) – crystal lattices → radiation damage [email protected] Semiconductor detectors, October 11, 2017 2 Applications Main applications: ● γ spectroscopy with high energy resolution ● Energy measurement of charged particles (few MeV) and particle identification (PID) via dE/dx (multiple layers needed) ● Very high spatial resolution for tracking and vertexing A few dates: 1930s – very first crystal detectors 1950s – first serious developments of particle detectors 1960s – energy measurement devices in commerce [email protected] Semiconductor detectors, October 11, 2017 3 Semiconductor detectors: outline ● Principle of operation of semiconductor detectors ● Properties of semiconductors (band structure) ● Intrinsic material ● Extrinsic (doped) semiconductors ● p-n junction ● Signal generation ● Energy measurement with semiconductor detectors ● Position measurement with semiconductor detectors ● Radiation damage [email protected] Semiconductor detectors, October 11, 2017 4 Principle of operation ● Detector operates as a solid state ionization chamber ● Charged particles create electron-hole pairs ● Place the crystal between two electrodes that set up an electric field → charge carriers drift and induce a signal ● Less than 1/3 of energy deposited goes into ionization.
    [Show full text]
  • Internal and External Exposure Exposure Routes 2.1
    Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body.
    [Show full text]
  • A Direct Search for Dark Matter with the Majorana Demonstrator
    A DIRECT SEARCH FOR DARK MATTER WITH THE MAJORANA DEMONSTRATOR Kristopher Reidar Vorren A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics. Chapel Hill 2017 Approved by: Reyco Henning Chris Clemens Jonathan Engel Christian Iliadis John F. Wilkerson c 2017 Kristopher Reidar Vorren ALL RIGHTS RESERVED ii ABSTRACT Kristopher Reidar Vorren: A Direct Search for Dark Matter with the Majorana Demonstrator (Under the direction of Reyco Henning) The Majorana Demonstrator is a neutrinoless double-beta decay experiment cur- rently operating 4850 ft underground in the Sanford Underground Research Facility in Lead, SD. Sub-keV thresholds and excellent low-energy resolution are features of the p-type point- contact high-purity germanium detectors deployed by Majorana, making them ideal for use in direct dark matter searches when combined with Majorana's ultra-low backgrounds. An analysis of data from a 2015 commissioning run of the Demonstrator with 478 kg d of exposure was performed to search for mono-energetic lines in the detectors' energy-spectrum from bosonic dark matter absorption. No dark matter signature was found in the 5-100 keV range, and upper limits were placed on dark bosonic pseudoscalar and vector-electric cou- plings. The same analysis produced null results and upper limits for three additional rare- event searches: Pauli-Exclusion Principle violating decay, solar axions, and electron decay. Improvements made to Majorana since commissioning will result in increased sensitivity to rare-event searches in future analyses.
    [Show full text]
  • Semiconductor Detectors Part 1
    1 Lectures on Detector Techniques Stanford Linear Accelerator Center September 1998 – February, 1999 Semiconductor Detectors Part 1 Helmuth Spieler Physics Division Lawrence Berkeley National Laboratory for more details see UC Berkeley Physics 198 course notes at http://www-physics.lbl.gov/~spieler Semiconductor Detectors Helmuth Spieler SLUO Lectures on Detector Techniques, October 23, 1998 LBNL 2 1. Principles Important excitations when radiation is absorbed in solids 1. atomic electrons ⇒ mobile charge carriers ⇒ lattice excitations (phonons) 2. elastic scattering on nuclei Recoil energy < order 10 eV ⇒ ionization ⇒ lattice excitations (phonons) at higher recoil energies ⇒ radiation damage (displacement of from lattice sites) Semiconductor Detectors Helmuth Spieler SLUO Lectures on Detector Techniques, October 23, 1998 LBNL 3 Most Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited → positive and negative charge pairs Charges move in field → current in external circuit (continuity equation) Semiconductor Detectors Helmuth Spieler SLUO Lectures on Detector Techniques, October 23, 1998 LBNL 4 Ionization chambers can be made with any medium that allows charge collection to a pair of electrodes. Medium can be gas liquid solid Crude comparison of relevant properties gas liquid solid density low moderate high atomic number Z low moderate moderate ionization energy εi moderate moderate low signal speed moderate moderate fast Desirable properties: low ionization energy ⇒ 1. increased charge
    [Show full text]
  • Semiconductor Pixel Detectors for Characterisation of Therapeutic Proton Beams
    AGH University of Science and Technology Faculty of Physics and Applied Computer Science Engineering thesis Semiconductor pixel detectors for characterisation of therapeutic proton beams Paulina Stasica Medical Physics Supervisor: dr inż. Jan Gajewski Proton Radiotherapy Group The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences Kraków, January 2020 dr inż. Jan Gajewski Instytut Fizyki Jądrowej PAN Merytoryczna ocena pracy przez opiekuna: Pani Paulina Stasica przygotowała pracę inżynierską, która jest elementem projektu ba- dawczego Fundacji na Rzecz Nauki Polskiej zatytułowanego „Ocena niepewności zasięgu efektu biologicznego w celu poprawy skuteczności radioterapii protonowej w Centrum Cyklotronowym Bronowic”, realizowanego w Instytucie Fizyki Jądrowej PAN w Krakowie. Praca inżynierska podzielona jest na trzy części: wstęp teoretyczny, część opisującą zasto- sowane metody eksperymentalne oraz wyniki i dyskusję pomiarów i symulacji Monte Carlo. Pracę kończy rozdział z wnioskami. We wstępie teoretycznym zostały opisane formy oddziaływań wysokoenergetycznych pro- tonów z materią oraz podstawy radioterapii protonowej, w tym rola względnej wydajności biologicznej i jej zależność od liniowego przekazu energii. W kolejnym rozdziale opisano zastosowanie półprzewodnikowych detektorów pikselowych typu Timepix MiniPIX do pomiaru depozycji energii w mieszanych polach promieniowania indukowanych przez wiązkę protonową. Opisano dwa typy eksperymentów przeprowadzonych przez Autorkę pracy, mających na celu zbadanie zdolności
    [Show full text]
  • Radiation Dosimetry in Cases of Normal and Emergency Situations
    Radiation Dosimetry in Cases of Normal and Emergency Situations A Thesis Submitted to Department of Physics Faculty of Science, Al Azhar University for The Degree of PhD. in Physics by Tarek Mahmoud Morsi M.Sc. (Physics, 2003) Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority Under Supervision Emeritus Prof. M. I. El Gohary Emeritus Prof. M. A. Gomaa Prof. of Biophysics Prof. of Radiation Physics Al Azhar University Atomic Energy Authority Emeritus Prof. Samia M. Rashad Emeritus Dr. Eid M. Ali Prof. of Radiation Emergencies Lecturer of Radiation Physics Atomic Energy Authority Atomic Energy Authority 2010 Approval Sheet for Submission Ti tle of the PhD. Thesis Radiation Dosimetry in Cases of Normal and Emergency Situations Name of the Candidate Tarek Mahmoud Morsi Atomic Energy Authority This thesis has been approved for submission by the supervisors : Emeritus Prof. M. I. El Gohary Emeritus Prof. M. A. Gomaa Prof. of Biophysics Prof. of Radiation Physics Al Azhar University Atomic Energy Authority Emeritus Prof. Samia M. Rashad Emeritus Dr. Eid M. Ali Prof. of Radiation Emergencies Lecturer of Radiation Physics Atomic Energy Authority Atomic Energy Authority Acknowledgement First and above all, all thanks to ALLAH the Merciful, the Compassionate without his help. I couldn't finish this work. I wish to express my sincere thanks and gratitude to Professor Dr. Mohamed I. EL-Gohary, Prof. of Biophysics, faculty of science, Al- Azhar University and Professor Dr. Mohamed A. Gomaa, Prof. of Radiation Physics, Atomic Energy Authority (A.E.A) for their kind supervision, continuous encouragement and helps during the course of this work.
    [Show full text]
  • Lecture Notes
    Fortieth Training Course on Safety and Regulatory Measures for BARC Facilities February 26-29, 2020 Anushaktinagar, Mumbai Lecture Notes BARC SAFETY COUNCIL SECRETARIAT BARC SAFETY FRAMEWORK Competent Authority Director, BARC BARC Safety Council BARC Safety Council -Specific Facilities Safety Committees for (BSC) (BSC-SF) Specific Facilities DSRCs & SRCs PPSRC OPSRC CFSRC CRAASDRW 1. DSRC-AP: Accelerator Projects Physical Protection System Operating Plants Safety Conventional and Fire Committee to Review Application for 2. DSRC -CFB: Common Facility Building Review Committee Review Committee Safety Review Committee Authorisation of Safe Disposal of 3. DSRC-CFV: Conventional Facilities, Vizag Radioactive Waste 4. DSRC-HFRR: High Flux Research ULSCs Reactor 1. MOSC: Metallurgical ULSCs 5. DSRC-IPF: I-131 Processing Facility All ULSCS Operations SC 1. ULSC-AG 6. DSRC-NRFN: Nuclear Reactor Facility- 2. ULSC-RO Radiological 2. ULSC-CEO All ULSCS North Site Operations) 3. ULSC-CFS Kalpakkam 7. DSRC -NRB: Nuclear Recycle Board 3. ULSC-RR (Research 4. ULSC-CFS Tarapur 8. DSRC-NRG: Nuclear Recycle Group Reactors) 5. ULSC-CFS Vizag Expert Committees 9. DSRC -RMRC: Radiation Medicine 4. ULSC-NRB-Kalpakkam 6. ULSC-ESG 1. ACOH: Advisory Committee on Research Centre, Kolkata 5. ULSC-NRB-Tarapur 7. ULSC-Med: Medical Occupational Health 10. DSRC -SNRF: Safe-guarded Nuclear 6. ULSC-NRG 8. ULSC-ML: Mod Lab 2. CRLRSO: Committee to Recycle Facility 7. ULSC-PA (Particle 9. ULSC-RDDG Recommend Licensing of 11. SRC-LNTC: Live Nuclear Training Accelerators) Radiological Safety Officers Complex, CME, Pune 3. DAC: Standing Committee on 12. SRC- NC: New Constructions Expert Committees Dose Apportionment Expert Committees 1.
    [Show full text]
  • An Annular Lithium-Drifted Germanium Detector for Studying Nuclear Reaction Gamma-Rays
    .. c .. I NASA CONTRACTOR REPORT 00 -m LOAN COPY: RETURN TO P AFWL (WLIL-2) I KIRTLAND AFB, N MEX e U 4 m 4 z AN ANNULAR LITHIUM-DRIFTED GERMANIUM DETECTORFOR STUDYING NUCLEAR REACTION GAMMA-RAYS Prepared by UNIVERSITY OF VIRGINIA Charlottesville, Va. fir NATIONAL AERONAUTICSAND SPACE ADMIRISTRATION WASHINGTON, D. c. SEPTEMBER 1968 TECH LIBRARY KAFB, NM / AN ANNULAR LITHIUM-DRIFTED GERMANIUM DETECTOR FOR STUDYING NUCLEAR REACTION GAMMA-RAYS /"-. .--L". By A-Le R. C:'i$RiJt,, and K. Ziock Distribution of this report is provided in the interest of informationexchange. Responsibility for the contents resides in the author or organization that prepared it. Pre red under Grant No. NsG-455 by, 7-VIRGINLA LL+"> Charlottesville, Va. for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Forsale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginio 22151 - CFSTI price $3.00 " AN ANNULAR U:THIU"DRLFTEDGm DETECTOR FORSTUDYING NUCLEAR F3ACTION GAMMA-FLUS By A. J. Levy, R. C Ritter and K. Ziock Department of Physics University of Virginia Abstract A fabrication technique has been developed for truly annular Ge(Li) gamma. detectors.Featuring spask-cutting to preciselycontrol the un- damagedgermanium volume, the detector is capableof standard-geometry techniques such as are used with NaI detectors. In this report, background material relevant to the annular geometry is presented. An extremelyexplicit, detailed description of thecomplete fabricationprocedure is given,including special cutting, radiant diffusion, and drifting techniques developed here. Measured properties of several detectors are gresented, with the emphasis being on the usefulness of the detector for high energy gamma ray spectra. AN ANNUIAR LITHIUM-DRIFTED GERMANIUM DETECTOR FOR STUDYING NUCLEAR REACTION GAMMA-RAYS The Lithium-Drifted Germanium detector represents the mostadvanced stage in a systematicdevelopment of semiconductor materials anddevices made from them forthe purpose of radiation detection.
    [Show full text]